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Preface

Carl Ludwig Siegel lectured on the Geometry of Numbers at New York
University during 1945-46. There were hardly any books on the subject at
that time other than Minkowski’s original one. The freshness of his approach
still lingers, and his presentation has its attractions for the aspiring young
mathematician.

When he received a request, many years later, for permission to reissue
the notes of those lectures, transcribed by the late B. Friedman, he declined.
Those who know of Siegel’s insistence on the expurgation of the first printing
of his lecture notes on Transcendental Numbers, or of his insistence on the
dissociation of his name from a projected English translation of his lecture
notes on Analytische Zahlentheorie (Gottingen, 1963/64), which had therefore
to be abandoned, need hardly be told that he had his own requirements.

We had occasion to discuss the matter further, and it was agreed that
the notes should be published only after they had been checked, corrected, and
rewritten, and he handed over his personal copy to me. I found that the task of
revision required far more attention to detail than I had at first glance thought
necessary. Other avocations prevented me from completing the work until the
summer of 1987, when it happened that Rudolf Suter got actively interested in
what I had been trying to carry out. His helpful and critical comments came
to me as an unexpected stimulus, and the present version is the result. It is a
pleasure for me to acknowledge Suter’s assistance.

Admirers of Siegel’s style can scarcely fail to notice his uncanny skill, and

perspicuity in argument, with an occasional flash of wit, as they progress with
the reading.

E.T.H. Zurich
31 March 1988 K. Chandrasekharan
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Lecture 1

§1. Convex sets

Consider an n-dimensional real Euclidean space R™, n > 1. Assume that
a rectangular coordinate system with origin at some point O is set up in R",
so that the coordinates of any point P € R" are z;,...,z,. For simplicity we
shall represent the point P by the vector z = (z;,...,z,). The origin O is
then represented by the zero-vector 0 = (0,...,0).

A non-empty set £ contained in R" is called a linear manifold in R", if
whenever any two different points P and @ belong to £, the infinite straight
line passing through P and @ belongs to £. Analytically the definition can be
formulated as follows:

Let = be the vector associated with P, and y the vector associated with Q.
Then L is a linear manifold, if whenever it contains P and Q, it contains every
point represented by a vector of the form Az + py, where A, p are arbitrary real
numbers, such that A + u = 1.

Any linear manifold £ has a dimension m, which is an integer not greater
than n, and which can be found as follows.

Let Py be a point in £. If £ contains no other point, then m = 0. Otherwise
let P, be another point in £. Then all points on the line passing through
Py, P, belong to £. If £ contains no point besides those on the line through
Py and P;, then m = 1. Otherwise let P, be a point in £ which is not on
the line through Py, P;. Then all points of the plane determined by the points
Py, Py, P, belong to L. If L contains no point outside this plane, then m = 2.
Otherwise let P; be a point in £ outside the plane through Py, P, P;, and we
can continue this procedure. Since the highest possible value of m is n, it is
clear that this procedure terminates and gives a definite value of m. Note that
L is completely determined by the m-dimensional tetrahedron, or m-simplex,
PyPy ... P, obtained in the course of the proof. Analytically this means the
following.

If (") is the vector representing the point P;, then a point P belongs to £
if and only if its vector can be written as Aoz(® 4+ A\;z(1) + ... + A, (™ where
Aoy A1y---, Am are arbitrary real numbers, such that Ag + A\; + ... + A, = 1.

A non-empty set £ C R" is called a convez set if whenever P and Q belong
to K, the segment joining P and Q belongs to K. Analytically the definition
can be formulated in this way: if P is represented by the vector z, and Q by
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the vector y, then K is a convex set if with P and @ it contains also every point
with a vector of the form Az + py, where A >0, u > 0,and A + = 1.

Just as before, we can find a number m, such that K is contained in a linear
manifold £,, of dimension m but not contained in any £, for r < m.

Let Py be a point in K. If K contains no other point, then m = 0. Otherwise
let P; be another point in X; then all points in the segment PyP; belong to
K. If K is contained in the infinite straight line passing through P, and P,
then m = 1, and so on. We can thus find an m-dimensional tetrahedron, or
m-simplex, PyP; ... Py, all of whose points belong to K.

If (9 is the vector representing the vertex P; of the simplex, then a point
P belongs to K, if its vector can be written as Moz@ + A,z 4 Az (M),
where Ag > 0,A; >20,...,A,, 20,and A\g+ A, +...+ A, = 1. K may contain
other points than those above; for example, K may be a disc in IR?, while the
above points belong to an inscribed triangle Py Py P;.

In general we shall deal with the case in which m = n. Before further
developing the properties of convex sets, we introduce some terms from set
topology.

A point P is an interior point of a set M contained in R", if there exists
an n-dimensional ball, with centre at P, all of whose points lie in M.

An open set is a set containing only interior points. The interior of a set
M, written Int M, or M°®, is the set of all its interior points.

It is easy to show that if K is an n-dimensional convex set in R", then it
must contain interior points, since the centre of gravity of an n-dimensional
tetrahedron is an interior point of the tetrahedron, and we know that such a
tetrahedron is contained in K.

Theorem 1. If K is an n-dimensional convez set in R", then Int K is a convez
set.

Let P be any point in Int £, @ € KX, Q@ # P, and R a point in the segment
PQ, R# Q. Then R € K, since K is convex. We shall prove that R € Int K.

Let |PQ| denote the length of PQ. Suppose |PQ| = b, and |RQ| = a. Since
P € Int K, there is an n-dimensional ball with radius » > 0 and centre P, all
of whose points lie in K. By choosing r small enough, we may further suppose
that b > r. Construct an n-dimensional ball of radius 5}, with R as centre, and
choose a point R’ in the interior of the ball. Since b > r > 0, we have a > 2,
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and therefore R' # Q. Construct the point P’ on the ray emanating from Q

and passing through R', so that lg—?;‘ = 4. Then P’ belongs to the interior of

the ball of radius r around P. Therefore P’ will be a point in K, and since Q

is also in X, we have R' € K. Since R' was an arbitrary point in a ball around
R, we have proved that R is an interior point of K.

§2. Convex bodies
We introduce some definitions for well-known ideas.

Definition. A convez body is a bounded, convex, open set in R".
The interior of an n-dimensional ball, defined by

2+z24...+22<a?, a#0,

provides an example.

A frontier point P [cf. Lecture XIV, §1] of a convex body B is a point not
belonging to B, such that there exist points of B arbitrarily close to P.

The surface OB of a convex body B is the set of all its frontier points.

Let B = BU 8B. Then B, called the closure of B, is a closed set; that is, it
contains all its limit points.

Theorem 2. If B is a convez body, then Int B = B.

This theorem is not true for an arbitrary set B. Suppose, for instance in R?,
that B is the interior of the unit disc excluding the origin. Then B is the closed
unit disc, while Int B is the complete interior of the unit disc. Of course the
reason for the failure of the theorem is that the original set B is not convex. [If
@ denotes the set of rational numbers in R', and we define i = [0,1]N @, then
Int U = (0,1), and it is not true that & C Int U, nor is it true that 2/ O Int 17.]

To prove Theorem 2, we shall first prove that B C Int B, and then that
Int B C B. Let P € B. Since B is open, there exists a ball with centre at P,
which lies completely in B. This ball belongs also to B, since B O B. Therefore
P is an interior point of B. Hence B C Int B. Conversely let P € Int B. Then
there exists a ball, with centre at P, all of whose points lie in B. Inscribe in the
ball an n-dimensional tetrahedron containing P in its interior. All the vertices
of the tetrahedron belong to B, and therefore either to B or to 8. If any
vertex belongs to 0B, we can find points of B arbitrarily close to it, so that we
can construct a new tetrahedron containing P in its interior, whose vertices all
belong to B. Since B is convex, P must belong to B. Hence Int B C B.

Theorem 3. The closure of a convez body 1s convez.

Let B be a convex body, with P € B, Qe B. We can then find two sequences
of points P; € B,Q; € B converging respectively to P and to Q. The segments
P;Q; lie completely in B and tend to the segment PQ. Therefore the points

of PQ are limit points of sequences of points in B, and so belong to B. This
proves that B is convex.
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§3. Gauge function of a convex body

One of the many important ideas introduced by Minkowski into the study
of convex bodies was that of gauge function. Roughly, the gauge function is the
equation of a convex body. Minkowski showed that the gauge function could
be defined in a purely geometric way and that it must have certain properties
analogous to those possessed by the distance of a point from the origin. He
also showed that conversely given any function possessing these properties,
there exists a convex body with the given function as its gauge function.

Before giving the definition of gauge function, we shall investigate some
further properties of the surface 08 of a convex body B. Let O be a point in B.
Consider any ray starting from O and going to infinity in an arbitrary direction.
We shall prove that this ray intersects OB in exactly one point. The ray must
intersect OB in at least one point, because B is bounded; and all points Q far
enough away do not belong to B. The distances [OQ)| of all points Q of the ray
which do not belong to B, have a greatest lower bound A, say. Then the point
P on the ray such that [OP| = A belongs to 9B. For if we choose any point P’
between P and O, then by the construction of P, P’ belongs to B. This shows
that there exist points of B arbitrarily close to P, but that P is not a point of
B, since there is no ball with centre at P, which is completely contained in B.
Hence P € 9B.

If the ray starting from O intersects OB in (at least) two different points,
first in P and then in @, we reach a contradiction. For Theorem 3 implies that
B is convex since B is, and the proof of Theorem 1 shows that P must be an
interior point of B and so belong to B. Since B is open, P cannot belong both
to B and to 9B.

Given a convex body B C R" containing the origin O, we define a function
f : R" — [0,00), as follows. If z € 9B, (and z denotes also the vector
representing the point «), then

(1) flz)=1.

For any other vector  # 0, construct the ray through O and the point (whose
vector is) z. Suppose this ray intersects the surface dB in a point y. Then
there exists a A > 0, such that £ = Ay, and we define

(2) fla)=2X.
We complete the definition of f by setting
(3) £(0) =0 .

The function f so defined is the gauge function of the convex body B.
We now prove that f is a positive-homogeneous (since A > 0) function of
degree one.

Theorem 4. If f is the gauge function of a convez body B C R" containing the
origin O, z € R", and p > 0, then f(uz) = pf(z).
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This is trivial for z = 0 because of (3). If z # 0, there exists a point y € 9B,
such that £ = Ay, A > 0. Because of (1) and (2), we then have

fluz) = f(pdy) = pA = pf(z) -

We note the trivial

Theorem 5. If f is the gauge function of a convez body B C R" containing the
origin O, z € R", then f(z) > 0 for z # 0, while f(0) = 0.

Note that the properties of the gauge function f, as expressed in Theorems
4 and 5, are also properties of the distance function | |, which assigns to a
vector z € R" (representing the point X) the distance of X from the origin,
that is |z| = |0X| = (2% + ... + £2)!/2, where z = (z;,...,%,). The distance
function is the gauge function of the n-dimensional unit ball; it has, however,
a third very important property, namely it satisfies the triangle inequality. We
shall show that an arbitrary gauge function also has this property.

Theorem 6. If f is the gauge function of a convez body B C R" containing the
origin O, and z,y € R", then

flz+y) < flz)+ f(y)

[This, together with the property expressed in Theorem 4, is referred to, later
on, as the convezity property of the gauge function f.]

By Definitions (1), (2) and (3), f(z) < lforallze B, and conversely,
f(z) £ 1 implies that z € B. Let z',y' € B. Then by Theorem 3 and the

definition of a convex set, we have Az’ 4+ py' € B, for A > 0, p > 0, and
A4+ p =1, so that
(4) fO2' +py') < 1.

The theorem is trivial if either z = 0, or y = 0. Assume that ¢ # 0, y # 0,

and define
.1 .1

I T Y TIw Y
By Theorem 4, we have f(z*) = f(y*) = 1, therefore z* € B, y* € B. Let
e S@ S
f@)+ fly) fx)+ f(y) '

then we have, from (4), f(Az* + puy*) < 1, or using Theorem 4,

1 " _ _flz+y)
f(fu)+fwﬁ +y0 @+ =

so that we have finally f(z +y) < f(z) + f(y).




