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Introduction

Scattering theory is the study of an interacting system on a scale of time
and/or distance which is large compared to the scale of the interaction
itself. As such, it is the most effective means, sometimes the only means,
to study microscopic nature. To understand the importance of scattering
theory, consider the variety of ways in which it arises. First, there are
various phenomena in nature (like the blue of the sky) which are the result
of scattering. In order to understand the phenomenon (and to identify it as
the result of scattering) one must understand the underlying dynamics and
its scattering theory. Second, one often wants to use the scattering of waves
or particles whose dynamics one knows to determine the structure and
position of small or inaccessible objects. For example, in x-ray crys-
tallography (which led to the discovery of DNA), tomography, and the
detection of underwater objects by sonar, the underlying dynamics is well
understood. What one would like to construct are correspondences that
link, via the dynamics, the position, shape, and internal structure of the
object to the scattering data. Ideally, the correspondence should be an
explicit formula which allows one to reconstruct, at least approximately,
the object from the scattering data. A third use of scattering theory is as a
probe of dynamics itself. In elementary particle physics, the underlying
dynamics is not well understood and essentially all the experimental data
are scattering data. The main test of any proposed particle dynamics is
whether one can construct for the dynamics a scattering theory that predicts
the observed experimental data. Scattering theory was not always so central
to physics: Even though the Coulomb cross section could have been
computed by Newton, had he bothered to ask the right question, its
calculation is generally attributed to Rutherford more than two hundred
years later. Of course, Rutherford’s calculation was in connection with the
first experiment in nuclear physics.

Scattering theory is so important for atomic, condensed matter, and high
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X INTRODUCTION

energy physics that an enormous physics literature has grown up. Un-
fortunately, the development of the associated mathematics has been much
slower. This is partially because the mathematical problems are hard but
also because lack of communication often made it difficult for mathe-
maticians to appreciate the many beautiful and challenging problems in
scattering theory. The physics literature, on the other hand, is not entirely
satisfactory because of the many heuristic formulas and ad hoc methods.
Much of the physics literature deals with the “ time-independent ” approach to
scattering theory because the time-independent approach provides powerful
calculationaltools. We feel that to use the time-independent formulas one must
understand them in terms of and derive them from the underlying dynamics.
Therefore, in this book we emphasize scattering theory as a time-dependent
phenomenon, in particular, as a comparison between the interacting and
free dynamics. This approach leads to a certain imbalance in our presentation
since we therefore emphasize large times rather than large distances. However,
as the reader will see, there is considerable geometry lurking in the back-
ground.

The scattering theories in branches of physics as different as classical
mechanics, continuum mechanics, and quantum mechanics, have in common
the two foundational questions of the existence and completeness of the
wave operators. These two questions are, therefore, our main object of study
in individual systems and are the unifying theme that runs throughout the
book. Because we treat so many different systems, we do not carry the
analysis much beyond the construction and completeness of the wave
operators, except in two-body quantum scattering, which we develop in
some detail. However, even there, we have not been able to include such
important topics as Regge theory, inverse scattering, and double dispersion
relations.

Since quantum mechanics is a linear theory, it is not surprising that the
heart of the mathematical techniques is the spectral analysis of Hamiltonians.
Bound states (corresponding to point spectra) of the interaction Hamiltonian
do not scatter, while states from the absolutely continuous spectrum do.
The mathematical property that distinguishes these two cases (and that
connects the physical intuition with the mathematical formulation) is the
decay of the Fourier transform of the corresponding spectral measures.
The case of singular continuous spectrum lies between and the crucial (and
often hardest) step in most proofs of asymptotic completeness is the proof
that the interacting Hamiltonian has no singular continuous spectrum.
Conversely, one of the best ways of showing that a self-adjoint operator
has no singular continuous spectrum is to show that it is the interaction
Hamiltonian of a quantum system with complete wave operators. This deep
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connection between scattering theory and spectral analysis shows the
artificiality of the division of material into Volumes 11l and 1V. We have,
therefore, preprinted at the end of this volume three sections on the
absence of continuous singular spectrum from Volume IV.

While we were reading the galley proofs for this volume, V. Enss intro-
duced new and beautiful methods into the study of quantum-mechanical
scattering. Enss’s paper is not only of interest for what it proves, but also
for the future direction that it suggests. In particular, it seems likely that
the methods will provide strong results in the theory of multiparticle
scattering. We have added a section at the end of this Chapter (Section X1.17)
to describe Enss’s method in the two-body case. We would like to thank
Professor Enss for his generous attitude, which helped us to include this
material.

The general remarks about notes and problems made in earlier intro-
ductions are applicable here with one addition: the bulk of the material
presented in this volume is from advanced research literature, so many of
the problems are quite substantial. Some of the starred problems summarize
the contents of research papers!
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Xl: Scattering Theory

It is notoriously difficult to obtain reliable results for quantum mechanical scattering problems.
Since they involve complicated interference phenomena of waves, any simple uncontrolled approxi-
mation is not worth more than the weather forecast. However, for two body problems with
central forces the computer can be used to calculate the phase shifts . . . . W. Thirring

X1.1 An overview of scattering phenomena

In this chapter we shall discuss scattering in a variety of physical situa-
tions. Our main goal is to illustrate the underlying similarities between the
large time behavior of many kinds of dynamical systems. We study the case
of nonrelativistic quantum scattering in great detail. Other systems we treat
to a lesser extent, emphasizing simple examples.

Scattering normally involves a comparison of two different dynamics for
the same system: the given dynamics and a “free” dynamics. It is hard to
give a precise definition of “free dynamics ™ which will cover all the cases we
consider, although we shall give explicit definitions in each individual case.
The characteristics that these free dynamical systems have in common are
that they are simpler than the given dynamics and generally they conserve
the momentum of the “individual constituents™ of the physical system. It is
important to bear in mind that scattering involves more than just the inter-
acting dynamics since certain features of the results will seem strange other-
wise. Because two dynamics are involved, scattering theory can be viewed as
a branch of perturbation theory. In the quantum-mechanical case we shall
see that the perturbation theory of the absolutely continuous spectrum is

1



2 Xl: SCATTERING THEORY

involved rather than the perturbation theory of the discrete spectrum
discussed in Chapter XII.

Scattering as a perturbative phenomenon emphasizes temporal asymptot-
ics, and this is the approach we shall generally follow. But all the concrete
examples we discuss will also have a geometric structure present and there is
clearly lurking in the background a theory of scattering as correlations
between spatial and temporal asymptotics. This is an approach we shall not
explicitly develop, in part because it has been discussed to a much lesser
degree. We do note that all the * free ” dynamics we discuss have * straight-
line motion” in the sense that solutions of the free equations which are
concentrated as t - — oo in some neighborhood of the direction n are con-
centrated as t » + oo in a neighborhood of the direction —n. These geomet-
ric ideas are useful for understanding the choice of free dynamics in Sections
14 and 16 where a piece of the interacting dynamics generates the free
dynamics. And clearly, the geometric ideas are brought to the fore in the
Lax-Phillips theory (Section 11) and in Enss’s method (Section 17).

Scattering theory involves studying certain states of an interacting system,
namely those states that appear to be “asymptotically free” in the distant
past and/or the distant future. To be explicit, suppose that we can view the
dynamics as transformations acting on the states. Let T, and T!° stand for
the interacting and free dynamical transformations on the “set of states” Z.
Z may be points in a phase space (classical mechanics), vectors in a Hilbert
space (quantum mechanics), or Cauchy data for some partial differential
equation (acoustics, optics). One is interested in pairs (p_, p) € Z so that

lim (Tp — T®p_) =0

| Sadia: o]

for some appropriate sense of limit, and similarly for pairs that approach
each other as t — + 00. One requirement that one must make on the notion
of limit is that for each p there should be at most one p_.

The basic questions of scattering theory are the following:

(1) Existence of scattering states Physically, one prepares the interact-
ing system in such a way that some of the constituents are so far from one
another that the interaction between them is negligible. One then *“ lets go,”
that is, allows the interacting dynamics to act for a long cime and then looks
at what has happened. One usually describes the initial state in terms of the
variables natural to describe free states, often momenta. One expects that
any free state “ can be prepared,” that is, for any p _ € Z,thereis a p € Z with
lim,._, T,p — T{®p_ = 0. Proving this is the basic existence question of
scattering,



X1.1  An overview of scattering phenomena 3

(2) Uniqueness of scattering states In order to describe the prepared
state in terms of free states, one must know that each free state is associated
with a unique interacting state; that is, given p_ there is at most one p such
that T®p_ — T,p - 0 as t = —o0. Notice that this is distinct from the re-
quirement on the limit above that there should be at most one p _ for each p.

(3) Weak asymptotic completeness Suppose that one has an interacting
state p that looked like a free state in the distant past in the sense that
lim,._, T®p_ — T, p = 0 for some state p_ . One hopes that for large posi-
tive times, the interacting state will again look like a free state in the sense
that there exists a state p, so that lim,_,, T\, — T,p = 0. In order to

prove this, one needs to show that the two subsets of

Tin= {peZHp_ e X with lim T _ -Tp= 0}

and

Toui = {pEZI 3p, e with lim T, - T,p =0}

=+ x

are equal. If in fact Z;, = Z_,,, then the system is said to have weak asymp-
totic completeness.

(4) Definition of the S-transformation If one has a pair of dynamical
systems (T!?, T,> for which one can prove existence and uniqueness of
scattering states (both as t - — oo and as t — oo ) and for which weak asymp-
totic completeness holds, then one can define a natural bijection of  onto
itself. Given p € Z, existence and uniqueness of scattering states assures us
that there exists a state Q" p € X, with lim,. _ . (T}(Q*p) — T{®p) = 0. Sim-
ilarly, Q~ is defined by lim,-., (T(Q p) — T{%)=0. Q* (respectively,
Q7) is a bijection from Z onto Z;, (respectively, Z,). Weak asymptotic
completeness assures us that Z;, = Z,,, so one can define the bijection

S=(Q7)Q*:T-%

S is called the scattering transformation. Thus, T!°(Sp) and T(®'p are related
by the condition that there exists a state Y ( = Q" p = Q™ (Sp))sothat T,y
“interpolates " between them. That is, T,y looks like T{%p in the past and
T{9Sp in the future. Thus S correlates the past and future asymptotics of
interacting histories. The reader should be warned that the maps
S=Q*"(Q7) " Z,,» L, and also the maps (Q*) 'Q~ and Q" (Q*)"!
occasionally appear in the literature. When weak asymptotic completeness
holds, §'=Q~S(Q)~!,so S and S’ are “ similar.” For this reason, the choice
between S and S’ is to some extent a matter of personal preference. We use S,
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the so-called EBFM S-matrix, throughout this book. We discuss the reasons
for the + convention in Sections 3 and 6.

In classical particle mechanics S is a bijection on phase space. In a quan-
tum theory with weak asymptotic completeness S is a linear unitary transfor-
mation and is called the S-operator or occasionally the S-matrix.

(5) Reduction of S due to symmetries In many problems there is an
underlying symmetry of both the free and interacting dynamics. This allows
one to conclude a priori, without detailed dynamical calculations, that S has
a special form. See Sections 2 and 8 for explicit details.

(6) Analyticity and the S-transformation A common refinement of scat-
tering theory for wave phenomena (quantum theory, optics, acoustics) is the
realization of S or the kernel of some associated integral operator as the
boundary value of an analytic function. In a heuristic sense this analyticity is
connected with Theorem 1X.16. For schematically, S describes the response
R of a system to some input [ in the following form:

t

R@O)=| flt— o)) dr

This formula has two features built in: (i) time translation invariance, that is,
/is a function of only t — t'; (ii) causality: R(t) depends only on I(t') for
t' <t Thus fis a function on [0, co). Its Fourier transform is thus the
boundary value of an analytic function. It is this causality argument that is
intuitively in the back of physicists’ minds when discussing analytic proper-
ties. Unfortunately, the proofs of these properties do not go along such
simple lines. We shall restrict our detailed discussion of analyticity to the
two-body quantum-mechanical case (Section 7) and to the Lax-Phillips
theory (Section 11).

(7) Asymptotic completeness Consider a system with forces between its
components that fall off as the components are moved apart. Physically, one
expects a state of such a system to “decay ” into freely moving clusters or to
remain “bound.” In many situations, there is a natural set of bound
states, Z,..0a < Z. One can usually prove that Z,,,.4 N Z;, = &. The above
physical expectation is

Zbound “+" zin =X= zI:mm\d “+” Zrml (l)
“ 4+ is different in classical and quantum-mechanical systems. In classical
particle mechanics * + " indicates set theoretic union; in quantum theory it
indicates a direct sum of Hilbert spaces. Establishing that (1) holds is the

problem of proving asymptotic completeness. Notice that asymptotic com-
pleteness implies weak asymptotic completeness. We remark that implicit in



