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Preface

This book began when I was assigned to help salvage an undergraduate computer
organization course. The course had suffered years of neglect: it had been taught by a
series of professors, mostly visitors, who had little or no interest or background in digi-
tal hardware, and the curriculum had deteriorated to a potpourri of topics that were only
loosely related to hardware architectures. In some semesters, students spent the entire
class studying Boolean Algebra, without even the slightest connection to actual
hardware. In others, students learned the arcane details of one particular assembly
language, without a notion of alternatives.

Is a computer organization course worth saving? Absolutely! In many Computer
Science programs, the computer organization course is the only time students are ex-
posed to fundamental concepts that explain the structure of the computer they are pro-
gramming. Understanding the hardware makes it possible to construct programs that
are more efficient and less prone to errors. In a broad sense, a basic knowledge of ar-
chitecture helps programmers improve program efficiency by understanding the conse-
quences of programming choices. Knowing how the hardware works can also improve
the programming process by allowing programmers to pinpoint the source of bugs
quickly. Finally, graduates need to understand basic architectural concepts to pass job
application tests given by firms like Intel and Microsoft.

One of the steps in salvaging our architecture course consisted in looking at text-
books. We discovered the texts could be divided into roughly two types: texts aimed at
beginning engineering students who would go on to design hardware, and texts written
for CS students that attempt to include topics from compilers, operating systems, and
(in at least one case) a complete explanation of how Internet protocols operate. Neither
approach seemed appropriate for a single, introductory course on the subject. We want-
ed a book that (1) focused on the concepts rather than engineering details (because our
students are not focused on hardware design); (2) explained the subject from a
programmer’s point of view, and emphasized consequences for programmers; and (3)
did not try to cover several courses’ worth of material. When no text was found, it
seemed that the only solution was to create one.

The text is divided into five parts. Part 1 covers the basics of digital logic, gates,
and data representation. We emphasize the representation chapter because notions of
two’s-compliment arithmetic and ranges of integer values are essential in programming.
Parts 2, 3, and 4 cover the three essential areas of architecture: processors, memories,
and I/0 systems. In each case, the chapters give students enough background to under-
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stand how the mechanisms operate and the consequences for programmers. Finally,
Part 5 covers advanced topics like parallelism, pipelining, and performance.

An Appendix describes an important aspect of the course: a hands-on lab where
students can learn by doing. Although most lab problems focus on programming, stu-
dents should spend the first few weeks in lab wiring a few gates on a breadboard. The
equipment is inexpensive (we spent less than fifteen dollars per student on permanent
equipment; students purchase their own set of chips for under twenty dollars).

We have set up a web site to accompany the book at:
http://www.eca.cs.purdue.edu

Rajesh Subraman has agreed to manage the site, which contains a set of class presenta-
tion materials created by the author as well as a set created by Rajesh. We invite other
instructors to contribute their materials.

The text and lab exercises have been used at Purdue; students have been extremely
positive about both. We received notes of thanks for the text and course. For many
students, the lab is their first experience with hardware, and they are enthusiastic.

My thanks to the many individuals who contributed to the book. Bernd Wolfinger
provided extensive reviews and made several important suggestions about topics and
direction. Dan Ardelean, James Cernak, and Tim Korb gave detailed comments on
many chapters. Dave Capka reviewed early chapters. Rajesh Subraman taught from the
book and provided his thoughts about the content. In the CS 250 class at Purdue, the
following students each identified one or more typos in the manuscript: Nitin Alreja,
Alex Cox, David Ehrmann, Roger Maurice Elion, Andrew Lee, Stan Luban, Andrew L.
Soderstrom, and Brandon Wuest.

Finally, I thank my wife, Chris, for her patient and careful editing and valuable
suggestions that improve and polish each book.

Douglas E. Comer

June, 2004
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