. ESABEERESRARIIEAS

T « S

!

TR
29t 51 i

(#ZEDAR)

ESSENTIALS OF COMPUTER
ARCHITECTURE

1 Al
TRt s,

B Douglas E. Comer

PEARSON

Prentice
Hall

ESMEFE BB F SRR ARFIHFA B
it &l
2 Gt 45 1) 2 i

(FZENRR)

ESSENTIALS OF COMPUTER
ARCHITECTURE

Douglas E. Comer

B e B E R

= .01 -2005 -0964 =

Essentials of Computer Architecture

Douglas E. Comer

A AT EHH WG AT Pearson Education (B A2 308 th RS D) O thbn % Jobn % & 415 i

English reprint edition copyright (¢) 2005 by PEARSON EDUCATION ASIA LIMITIED and HIGHER
EDUCATION PRESS. (Essentials of Computer Architecture from Pearson Education’s edition of the Work)
Essentials of Computer Architecture ,le by Douglas E. Comer,Copyright (¢ 2005.

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc. | publishing as Pearson
Education, Ine. .

This edition is authorized for sale only in the People’s Republic of China (excluding the Special
Administrative Regions of Hong Kong and Macau).

JFURR ISBN:0 - 13 - 149179 -2

For sale and distribution in the People’s Republic of China
exclusively (except Taiwan,Hong Kong SAR and Macao SAR).

XRFHREAREMERERN(BERRTFAETEES R H
TERXMREGESHX)HEXTT.

E B4 B (CIP) 87

AL R G 45 # BAE = Essentials of Computer Arc
hitecture/ (3&)FHER (Comer,D. E.). —ZE4<.
Jbmt: B AR it , 2005. 12

ISBN 7—04 —017816 — 8

Lt 8., M. HEVERERSH -5
SR - B - 3L V. TP303

rp [AR B A CIP B 4% 7 (2005) 58 132966 5

HARZIT FEHE M WEHLL 010 - 58581118

Hb JE TR ESN K 4 5 BEAME 800 - 810 — 0598

HREI4RES 100011 2] HE http: / www. hep.edu.cn

= #l 010 — 58581000 http: // www. hep.com.cn
2 # AR BRITERAR M _EITM http: / www. landraco. com
Ef Rl Jtat s SCEpR T http: // www. landraco. com. cn
FF & 787%1092 1/16 "R w2005 4F 12 A% 1

Ep i 25 Ep W®2005 4E 12 A% 1 ERKI
5 # 480000 T M 38.00 G

A A5 UG BT (R T R T S) R 3 A P A T AR A
TR RS8R
WS 17816—00

Preface

This book began when I was assigned to help salvage an undergraduate computer
organization course. The course had suffered years of neglect: it had been taught by a
series of professors, mostly visitors, who had little or no interest or background in digi-
tal hardware, and the curriculum had deteriorated to a potpourri of topics that were only
loosely related to hardware architectures. In some semesters, students spent the entire
class studying Boolean Algebra, without even the slightest connection to actual
hardware. In others, students learned the arcane details of one particular assembly
language, without a notion of alternatives.

Is a computer organization course worth saving? Absolutely! In many Computer
Science programs, the computer organization course is the only time students are ex-
posed to fundamental concepts that explain the structure of the computer they are pro-
gramming. Understanding the hardware makes it possible to construct programs that
are more efficient and less prone to errors. In a broad sense, a basic knowledge of ar-
chitecture helps programmers improve program efficiency by understanding the conse-
quences of programming choices. Knowing how the hardware works can also improve
the programming process by allowing programmers to pinpoint the source of bugs
quickly. Finally, graduates need to understand basic architectural concepts to pass job
application tests given by firms like Intel and Microsoft.

One of the steps in salvaging our architecture course consisted in looking at text-
books. We discovered the texts could be divided into roughly two types: texts aimed at
beginning engineering students who would go on to design hardware, and texts written
for CS students that attempt to include topics from compilers, operating systems, and
(in at least one case) a complete explanation of how Internet protocols operate. Neither
approach seemed appropriate for a single, introductory course on the subject. We want-
ed a book that (1) focused on the concepts rather than engineering details (because our
students are not focused on hardware design); (2) explained the subject from a
programmer’s point of view, and emphasized consequences for programmers; and (3)
did not try to cover several courses’ worth of material. When no text was found, it
seemed that the only solution was to create one.

The text is divided into five parts. Part 1 covers the basics of digital logic, gates,
and data representation. We emphasize the representation chapter because notions of
two’s-compliment arithmetic and ranges of integer values are essential in programming.
Parts 2, 3, and 4 cover the three essential areas of architecture: processors, memories,
and I/0 systems. In each case, the chapters give students enough background to under-

Xxii Preface

stand how the mechanisms operate and the consequences for programmers. Finally,
Part 5 covers advanced topics like parallelism, pipelining, and performance.

An Appendix describes an important aspect of the course: a hands-on lab where
students can learn by doing. Although most lab problems focus on programming, stu-
dents should spend the first few weeks in lab wiring a few gates on a breadboard. The
equipment is inexpensive (we spent less than fifteen dollars per student on permanent
equipment; students purchase their own set of chips for under twenty dollars).

We have set up a web site to accompany the book at:
http://www.eca.cs.purdue.edu

Rajesh Subraman has agreed to manage the site, which contains a set of class presenta-
tion materials created by the author as well as a set created by Rajesh. We invite other
instructors to contribute their materials.

The text and lab exercises have been used at Purdue; students have been extremely
positive about both. We received notes of thanks for the text and course. For many
students, the lab is their first experience with hardware, and they are enthusiastic.

My thanks to the many individuals who contributed to the book. Bernd Wolfinger
provided extensive reviews and made several important suggestions about topics and
direction. Dan Ardelean, James Cernak, and Tim Korb gave detailed comments on
many chapters. Dave Capka reviewed early chapters. Rajesh Subraman taught from the
book and provided his thoughts about the content. In the CS 250 class at Purdue, the
following students each identified one or more typos in the manuscript: Nitin Alreja,
Alex Cox, David Ehrmann, Roger Maurice Elion, Andrew Lee, Stan Luban, Andrew L.
Soderstrom, and Brandon Wuest.

Finally, I thank my wife, Chris, for her patient and careful editing and valuable
suggestions that improve and polish each book.

Douglas E. Comer

June, 2004

Preface xxiii

About The Author

Dr. Douglas Comer has an extensive background in computer systems, and has
worked with both hardware and software. Comer’s work on software spans most as-
pects of systems, including compilers and operating systems. He created a complete
operating system, including a process manager, a memory manager, and device drivers
for both serial and parallel interfaces. Comer has also implemented network protocol
software and network device drivers for conventional computers and network proces-
sors. Both his operating system, Xinu, and TCP/IP protocol stack have been used in
commercial products.

Comer’s experience with hardware includes work with discrete components, build-
ing circuits from logic gates, and experience with basic silicon technology. He has
written popular textbooks on network processor architectures, and at Bell Laboratories,
Comer studied VLSI design and fabricated a VLSI chip.

Comer is a Distinguished Professor of Computer Science at Purdue University,
where he develops and teaches courses and does research on computer organization,
operating systems, networks, and Internets. Comer has created innovative laboratories
in which students can build and measure systems such as operating systems and IP
routers; all of Comer’s courses include hands-on lab work. He continues to consult and
lecture at universities, industries, and conferences around the world.

In addition to writing a series of internationally acclaimed technical books on com-
puter operating systems, networks, TCP/IP, and computer technologies, Comer serves
as the editor-in-chief of the journal Software — Practice and Experience. He is a Fel-
low of the ACM, a Fellow of the Purdue Teaching Academy, and a recipient of
numerous awards, including a Usenix Lifetime Achievement award.

Additional information can be found at:
www.cs.purdue.edu/people/comer
and information about Comer’s books can be found at;

www.comerbooks.com

Contents

Preface xxi
Chapter 1 Introduction And Overview 1

1.1 The Importance Of Architecture 1

1.2 Learning The Essentials 1

1.3 Organization Of The Text 2

1.4 What We Will Omit 3

1.5 Terminology: Architecture And Design 3

1.6 Summary 3

PART | Basics

Chapter 2 Fundamentals Of Digital Logic 7

2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
215
2.16
2.17
2.18

Introduction 7

Electrical Terminology: Voltage And Current 7

The Transistor 8

Logic Gates 9

Symbols Used For Gates 10

Construction Of Gates From Transistors 11
Example Interconnection Of Gates 12

Multiple Gates Per Integrated Circuit 14 !
The Need For More Than Combinatorial Circuits 15
Circuits That Maintain State 15

Transition Diagrams 16

Binary Counters 17

Clocks And Sequences 18

The Important Concept Of Feedback 20

Starting A Sequence 22

Iteration In Software Vs. Replication In Hardware 22
Gate And Chip Minimization 23

Using Spare Gates 24

viii

2.19
2.20
2.21
2.22
223
2.24

Power Distribution And Heat Dissipation 24
Timing 25

Physical Size And Process Technologies 26
Circuit Boards And Layers 27

Levels Of Abstraction 27

Summary 28

Chapter 3 Data And Program Representation

Bl
3.2
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.1
3.12
3,13
3.14
315
3.16
317
3.18
3.19
3.20

Introduction 29

Digital Logic And Abstraction 29

Bits And Bytes 30

Byte Size And Possible Values 30

Binary Arithmetic 31

Hexadecimal Notation 32

Notation For Hexadecimal And Binary Constants . 33
Character Sets 34

Unicode 35

Unsigned Integers, Overflow, And Underflow 35
Numbering Bits And Bytes 36

Signed Integers 37

An Example Of Two’s Complement Numbers 38
Sign Extension 39

Floating Point 40

Special Values 42

Range Of IEEE Floating Point Values 42

Data Aggregates 42

Program Representation 43

Summary 43

PART Il Processors

Chapter 4 The Variety Of Processors And Computational Engines

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction 47

Von Neumann Architecture 47

Definition Of A Processor 48

The Range Of Processors 48

Hierarchical Structure And Computational Engines 49
Structure Of A Conventional Processor 51

Definition Of An Arithmetic Logic Unit (ALU) 52

Contents

29

47

Contents

4.8

49

4.10
4.11
4.12
4.13
4.14
4.15

Processor Categories And Roles 52
Processor Technologies 54

Stored Programs 54

The Fetch-Execute Cycle 55

Clock Rate And Instruction Rate 56
Control: Getting Started And Stopping 57
Starting The Fetch-Execute Cycle 57
Summary 58

Chapter 5 Processor Types And Instruction Sets 61
5.1 Introduction 61
5.2 Mathematical Power, Convenience, And Cost 61
5.3 Instruction Set And Representation 62
5.4 Opcodes, Operands, And Results 63
5.5 Typical Instruction Format 63
5.6 Variable-Length Vs. Fixed-Length Instructions 63
5.7 General-Purpose Registers 64
5.8 Floating Point Registers And Register Identification 65
5.9 Programming With Registers 65
5.10 Register Banks 66
5.11 Complex And Reduced Instruction Sets 67
5.12 RISC Design And The Execution Pipeline 68
5.13 Pipelines And Instruction Stalls 69
5.14 Other Causes Of Pipeline Stalls 71
5.15 Consequences For Programmers 71
5.16 Programming, Stalls, And No-Op Instructions 72
5.17 Forwarding 72
5.18 Types Of Operations 3
5.19 Program Counter, Fetch-Execute, And Branching 73
5.20 Subroutine Calls, Arguments, And Register Windows 75
5.21 An Example Instruction Set 76
5.22 Minimalistic Instruction Set 78
5.23 The Principle Of Orthogonality 79
5.24 Condition Codes And Conditional Branching 80
5.25 Summary 80
Chapter 6 Operand Addressing And Instruction Representation 83
6.1 Introduction 83
6.2 Zero, One, Two, Or Three Address Designs 83
6.3 Zero Operands Per Instruction 84

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

One Operand Per Instruction 85

Two Operands Per Instruction 85

Three Operands Per Instruction 86
Operand Sources And Immediate Values 86
The Von Neumann Bottleneck 87

Explicit And Implicit Operand Encoding 88
Operands That Combine Multiple Values 89
Tradeoffs In The Choice Of Operands 90
Values In Memory And Indirect Reference 91
Operand Addressing Modes 92

Summary 93

Chapter 7 CPUs: Microcode, Protection, And Processor Modes

7.1
72
73
7.4
y ¥
7.6
Ladl
7.8
7.9
7.10
7.11
7.12
713
7.14
215
7.16
7.17
7.18
7.19
7.20
Zi2d
7.22
7:.23
7.24

Introduction 95

A Central Processor 95

CPU Complexity 96

Modes Of Execution 97

Backward Compatibility 97

Changing Modes 98

Privilege And Protection 99

Multiple Levels Of Protection 99

Microcoded Instructions 100

Microcode Variations 102

The Advantage Of Microcode 102

Making Microcode Visible To Programmers 103
Vertical Microcode 103

Horizontal Microcode 104

Example Horizontal Microcode 105

A Horizontal Microcode Example 107

Operations That Require Multiple Cycles 108
Horizontal Microcode And Parallel Execution 109
Look-Ahead And High Performance Execution 110
Parallelism And Execution Order 111
Out-Of-Order Instruction Execution 111
Conditional Branches And Branch Prediction 112
Consequences For Programmers 113

Summary 113

Contents

95

Contents

Chapter 8 Assembly Languages And Programming Paradigm

8.1
8.2
83
84
85
8.6
8.7
8.8
8.9
8.10
811
8.12
813
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22

Introduction 115

Characteristics Of A High-level Programming Language
Characteristics Of A Low-Level Programming Language
Assembly Language 117

Assembly Language Syntax And Opcodes 118
Operand Order 120

Register Names 121

Operand Types 122

Assembly Language Programming Paradigm And Idioms
Assembly Code For Conditional Execution 123
Assembly Code For A Conditional Alternative 124
Assembly Code For Definite Iteration 124

Assembly Code For Indefinite Iteration 125

Assembly Code For Procedure Invocation 125
Assembly Code For Parameterized Procedure Invocation
Consequence For Programmers 127

Assembly Code For Function Invocation 128
Interaction Between Assembly And High-Level Languages
Assembly Code For Variables And Storage 129
Two-Pass Assembler 130

Assembly Language Macros 131

Summary 134

PART Il Memories

Chapter 9 Memory And Storage

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Introduction 137

Definition 137

The Key Aspects Of Memory 138

Characteristics Of Memory Technologies 138

The Important Concept Of A Memory Hierarchy 140
Instruction And Data Store 140

The Fetch-Store Paradigm 141

Summary 141

115
116

122

126

128

115

137

xii
Chapter 10 Physical Memory And Physical Addressing

10.1 Introduction 143

10.2 Characteristics Of Computer Memory 143
10.3 Static And Dynamic RAM Technologies 144
10.4 Measures Of Memory Technology 145

10.5 Density 146

10.6 Separation Of Read And Write Performance 146
10.7 Latency And Memory Controllers 146

10.8 Synchronized Memory Technologies 147
10.9 Multiple Data Rate Memory Technologies 148
10.10 Examples Of Memory Technologies 148
10.11 Memory Organization 148

10.12 Memory Access And Memory Bus 149
10.13 Memory Transfer Size 150

10.14 Physical Addresses And Words 150

10.15 Physical Memory Operations 150

10.16 Word Size And Other Data Types 151
10.17 An Extreme Case: Byte Addressing 151
10.18 Byte Addressing With Word Transfers 152
10.19 Using Powers Of Two 153

10.20 Byte Alignment And Programming 154
10.21 Memory Size And Address Space 154

10.22 Programming With Word Addressing 155
10.23 Measures Of Memory Size 155

10.24 Pointers And Data Structures 156

10.25 A Memory Dump 156

10.26 Indirection And Indirect Operands 158
10.27 Memory Banks And Interleaving 158

10.28 Content Addressable Memory 159

10.29 Ternary CAM 160

10.30 Summary 160

Chapter 11 Virtual Memory Technologies And Virtual Addressing

11.1 Introduction 163

11.2 Definition 163

11.3 A Virtual Example: Byte Addressing 164

11.4 Virtual Memory Terminology 164

11.5 An Interface To Multiple Physical Memory Systems 164
11.6 Address Translation Or Address Mapping 166

11.7 Avoiding Arithmetic Calculation 167

11.8 Discontiguous Address Spaces 168

Contents

143

163

Contents

11.9

11.10
11.11
.12
11.13
11.14
11,75
11.16
11.17
11.18
11.19
11.20
11.21
ifsl.22
14.23
11.24
11.25
11.26
11.27
11.28

Other Memory Organizations 169
Motivation For Virtual Memory 169

Multiple Virtual Spaces And Multiprogramming 170,

Multiple Levels Of Virtualization 171

Creating Virtual Spaces Dynamically 171
Base-Bound Registers 172

Changing The Virtual Space 172

Virtual Memory, Base-Bound, And Protection 173
Segmentation 174

Demand Paging 175

Hardware And Software For Demand Paging 175
Page Replacement 176

Paging Terminology And Data Structures 176
Address Translation In A Paging System 177
Using Powers Of Two 178

Presence, Use, And Modified Bits 179

Page Table Storage 180

Paging Efficiency And A Translation Lookaside Buffer
Consequences For Programmers 182

Summary 183

Chapter 12 Caches And Caching

121
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20

Introduction 185

Definition 185

Characteristics Of A Cache 186

The Importance Of Caching 187

Examples Of Caching 188

Cache Terminology 188

Best And Worst Case Cache Performance 189
Cache Performance On A Typical Sequence 190
Cache Replacement Policy 190

LRU Replacement 191

Multi-level Cache Hierarchy 191

Preloading Caches 192

Caches Used With Memory 192

TLB As A Cache 193

Demand Paging As A Form Of Caching 193
Physical Memory Cache 194

Write Through And Write Back 194

Cache Coherence 195

L1, L2, and L3 Caches 196

Sizes Of L1, L2, And L3 Caches 197

181

xiii

185

Xiv

12.21
12.22
12:23
12.24
12.25

Instruction And Data Caches 197

Virtual Memory Caching And A Cache Flush 198
Implementation Of Memory Caching 199

Direct Mapping Memory Cache 200

Using Powers Of Two For Efficiency 201

12.26 Set Associative Memory Cache 202
12.27 Consequences For Programmers 203
12.28 Summary 204

PARTIV /O

Chapter 13 Input/Output Concepts And Terminology

13.1
13.2
13.3
134
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12

Introduction 207

Input And Output Devices 207

Control Of An External Device 208

Data Transfer 209

Serial And Parallel Data Transfers 209
Self-Clocking Data 210

Full-Duplex And Half-Duplex Interaction 210
Interface Latency And Throughput 211

The Fundamental Idea Of Multiplexing 211
Multiple Devices Per External Interface 212
A Processor’s View Of I/0 213

Summary 213

Chapter 14 Buses And Bus Architectures

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13

Introduction 215

Definition Of A Bus 215

Processors, I/0 Devices, And Buses 216
Proprietary And Standardized Buses 216
Shared Buses And An Access Protocol 217
Multiple Buses 217

A Parallel, Passive Mechanism 217
Physical Connections 217

Bus Interface 218

Address, Control, And Data Lines 219
The Fetch-Store Paradigm 220
Fetch-Store Over A Bus 220

The Width Of A Bus 220

Contents

207

215

Contents

14.14
14.15
14.16
14.17
14.18
14.19
14.20
14.21
14.22
14.23
14.24
14.25
14.26
14.27
14.28

XV

Multiplexing 221

Bus Width And Size Of Data Items 222

Bus Address Space 223

Potential Errors 224

Address Configuration And Sockets 225
Many Buses Or One Bus 226

Using Fetch-Store With Devices 226

An Example Of Device Control Using Fetch-Store 226
Operation Of An Interface 227

Asymmetric Assignments 228

Unified Memory And Device Addressing 228
Holes In The Address Space 230

Address Map 230

Program Interface To A Bus 231

Bridging Between Two Buses 232

14.29 Main And Auxiliary Buses 232
14.30 Consequences For Programmers 234
14.31 Switching Fabrics 234
14.32 Summary 235
Chapter 15 Programmed And Interrupt-Driven I/O 237
15.1 Introduction 237

15.2
15.3
154
LT
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21

1/0 Paradigms 237

Programmed I/0 238

Synchronization 238

Polling 239

Code For Polling 239

Control And Status Registers 241

Processor Use And Polling 241

First, Second, And Third Generation Computers 242
Interrupt-Driven I/0 242

A Hardware Interrupt Mechanism 243

Interrupts And The Fetch-Execute Cycle 243

Handling An Interrupt 244

Interrupt Vectors 245

Initialization And Enabling And Disabling Interrupts 246
Preventing Interrupt Code From Being Interrupted 246
Multiple Levels Of Interrupts 246

Assignment Of Interrupt Vectors And Priorities 247
Dynamic Bus Connections And Pluggable Devices 248
The Advantage Of Interrupts 249

Smart Devices And Improved 1/0 Performance 249

xvi

15.22
15.23
15.24
15.25
15.26

Contents

Direct Memory Access (DMA) 250

Buffer Chaining 251

Scatter Read And Gather Write Operations 252
Operation Chaining 252

Summary 253

Chapter 16 A Programmer’s View Of Devices, 1/0, And Buffering 255

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19
16.20
16.21
16.22
16.23
16.24
16.25
16.26
16.27

Introduction 255

Definition Of A Device Driver 256

Device Independence, Encapsulation, And Hiding 256
Conceptual Parts Of A Device Driver 257

Two Types Of Devices 258

Example Flow Through A Device Driver 258

Queued Output Operations 259 1
Forcing An Interrupt 261

Queued Input Operations. 261

Devices That Support Bi-Directional Transfer 262
Asynchronous Vs. Synchronous Programming Paradigm 263
Asynchrony, Smart Devices, And Mutual Exclusion 264
1/0 As Viewed By An Application 264

Run-Time 1/0 Libraries 265

The Library/Operating System Dichotomy 266

1/0 Operations The OS Supports 267

The Cost Of I/0 Operations 268

Reducing The System Call Overhead 268

The Important Concept Of Buffering 269
Implementation of Buffering 270

Flushing A Buffer 271

Buffering On Input 272

Effectiveness Of Buffering 272

Buffering In An Operating System 273

Relation To Caching 274

An Example: The Unix Standard 1/0 Library 274
Summary 274

Contents xvii

PART V Advanced Topics

Chapter 17 Parallelism 279

17.1 Introduction 279

17.2 Parallel And Pipelined Architectures 279

17.3 Characterizations Of Parallelism 280

17.4 Microscopic Vs. Macroscopic 280

17.5 Examples Of Microscopic Parallelism 281

17.6 Examples Of Macroscopic Parallelism 281

17.7 Symmetric Vs. Asymmetric 282

17.8 Fine-grain Vs. Coarse-grain Parallelism 282

17.9 Explicit Vs. Implicit Parallelism 283

17.10 Parallel Architectures 283

17.11 Types Of Parallel Architectures (Flynn Classification) 283
17.12 Single Instruction Single Data (SISD) 284

17.13 Single Instruction Multiple Data (SIMD) 284

17.14 Multiple Instructions Multiple Data (MIMD) 286
17.15 Communication, Coordination, And Contention 288
17.16 Performance Of Multiprocessors 290

17.17 Consequences For Programmers 292

17.18 Redundant Parallel Architectures 294

17.19 Distributed And Cluster Computers 295

17.20 Summary 296

Chapter 18 Pipelining 299

18.1 Introduction 299

18.2 The Concept Of Pipelining 299

18.3 Software Pipelining 301

18.4 Software Pipeline Performance And Overhead 302
18.5 Hardware Pipelining 303

18.6 How Hardware Pipelining Increases Performance 303
18.7 When Pipelining Can Be Used 306

18.8 The Conceptual Division Of Processing = 307

18.9 Pipeline Architectures 307

18.10 Pipeline Setup, Stall, And Flush Times 308

18.11 Definition Of Superpipeline Architecture 308
18.12 Summary 309

