Broadview PEARSON - BERERBR

www.broadview.com.cn

Cifi e PPt
(5540)

B e s (ST LA

.........................

- RIKERBE -

Cifi BTkt
(B4hiR)

Programming in C (4th Edition)

(xbat)

[38] Stephen G. Kochan &

% F I ¥ & AR AL
Publishing House of Electronics Industry
JE 5 -BEING

SR

ABLEA T CIEFMI AR, B CLL R MIAZ . 456 E& KRk e B RO R AR
VbR, PR FRBES T CIESM CIESE, MErHLUEE Tl 2%,

Al Rz CIES, AL ESERA B M C BB, IRADCATEAE 21X T S 1Y
AR, BRI RN, BN, BREESEIHA 1M, ETRESIS)A %,

T B IA LY, REBATLLEEABE VI CiES.
Original edition, entitled Programming in C, 4E, 9780321776419 by Stephen G. Kochan, published by Pearson
Education, Inc., publishing as Addison-Wesley, Copyright © 2015 Pearson Education,Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

A4S ENRR & A tH R Pearson Education £ 42 2 7 H RO AT PR2Y 7142 T Ha -1 Tolk ki
o RS HMCE BB, AELMER 7 S AT .

AAS B A ERBESEN (NG b B i IR TR BT B R rp S X)) k1T,
AP FCEN R A Pearson Education $54: 20 & IR SEHBOCHi (k% , Tohr%# A8,
WA 5 A AP Id S 5. 01-2015-5599

BPERRE (CP) B

CiESFFi%it: % 4 Mt =Programming in C, 4E: 33/ () 5% (KochanS.G.) . —Jbxi. 1
Tkt itt, 2016.4

(JFEAE S5 A)

ISBN 978-7-121-27319-3

L OcCIL @51 @ CiEg — fFikit % v. @O TP312

A | R AR A 1 CIP £l dZi - (2015) 5 234566

PRI GwR < skER x| 2
T AESER: hRE-E
Efl Fill: =i e EN 45 A PR A w
E'S IT: =il fe R EN %5 A PR 2 =]
WK AT: Mol R
entliEiEx A% 173 5% WB4w: 100036
A 787x9801/16 Eflak . 33.75 TH: 650 TF
Fe k. 2016 4E4 A5 1R
El k. 2016 4= 4 A% 1 RENKI
% #r: 108.00 ¢

FURI S5 e - ol Bl b 5 A A e R, 33 1 WS A5 R T . 5 s ik, 1 S AR R ATIRIE A&
06 Z KB HLEE . (010) 88254888,

JF R B RIE R HL % zlts@phei.com.cn, #ERIRACEER I &M {4 % dbgq@phei.com.cn,

fR% k. (010) 88258888,

R 25 3% 0 5L Ao BE o

X TEE

Stephen G. Kochan fii J{] C ifi & BEiHH/F C 2 A L 30 4F I i), i JL A fie i
B Cifi w B WAER, 45 Programming in C. Programming in Objective-C Fl Topics in
C Programming. At UNIX J7 [b A7 Kt %k, J& Exploring the UNIX System il UNIX
Shell Programming 55 H G EH .

AP A TTMAEE

Dean Miller Ji& — i {5 Fl 4 4, 75 HH RSORIVRE V7T 21 & 7 it 0UICRR 4 A 2ot 20 4F 11
2 %, Al J& Sams Teach Yourself C in One Hour a Day Fl Sams Teach Yourself Beginning
Programming in 24 Hours it L RRAR K & & #

i

S0 MR T 9148 1 R ME A A5 45 A RRAS B 4R L AT B . Douglas McCormick., Jim
Scharf, Henry Tabickman, Dick Fritz, Steve Levy, Tony laninno F1 Ken Brown, ﬁ%f?jﬁtﬁﬁ'ﬂ
4K Henry Mullish 165 1E)7 FIATRMIE L H0E g brRESE AR,

1 Pearson B TAE A A, FREAS HIIRSE Mark Taber FI T/ 445 Mandie Frank, i 58
I SCF 4 #8 Charlotte Kughen FIEZ AR 4% Siddhartha Singh. #izJm, 1 Pearson B A £ E 5
AT FE B A SR AR A TAEASY, FERm AR Al .

Hx

Introduction 1

1 Some Fundamentals 5
Programming 5
Higher-Level Languages 5
Operating Systems 6
Compiling Programs 7
Integrated Development Environments 10
Language Interpreters 10

2 Compiling and Running Your First Program 11
Compiling Your Program 12
Running Your Program 12
Understanding Your First Program 13
Displaying the Values of Variables 15
Comments 17
Exercises 19

3 Variables, Data Types, and Arithmetic Expressions 21

Understanding Data Types and Constants 21

The Integer Type int 22

The Floating Number Type float 23

The Extended Precision Type double 23

The Single Character Type char 24

:The Boolean Data Type Bool 24

Type Specifiers: long, long long, short, unsigned, and signed 26
Working with Variables 29
Working with Arithmetic Expressions 30

Integer Arithmetic and the Unary Minus Operator 33
Combining Operations with Assignment: The Assignment Operators 39
Types cComplex and Imaginary 40
Exercises 40

4 Program Looping 43
Triangular Numbers 43
The for Statement 44
Relational Operators 46
Aligning Output 50
Program Input 51
Nested for Loops 53
for Loop Variants 55
The while Statement 56
The do Statement 60
The break Statement 62
The continue Statement 62
Exercises 63

5 Making Decisions 65
The if Statement 65
The if-else Construct 69
Compound Relational Tests 72
Nested if Statements 74
The else if Construct 76
The switch Statement 83
Boolean Variables 86
The Conditional Operator 90
Exercises 92

6 Working with Arrays 95

Defining an Array 96
Using Array Elements as Counters 100
Generating Fibonacci Numbers 103
Using an Array to Generate Prime Numbers 104

Initializing Arrays 106

Character Arrays 108
Base Conversion Using Arrays 109
The const Qualifier 111

Multidimensional Arrays 113

Variable Length Arrays 115

Exercises 117

B*

Vi

Bx

7 Working with Functions 119
Defining a Function 119
Arguments and Local Variables 123
Function Prototype Declaration 124
Automatic Local Variables 124
Returning Function Results 126
Functions Calling Functions Calling... 130
Declaring Return Types and Argument Types 133
Checking Function Arguments 135
Top-Down Programming 137
Functions and Arrays 137
Assignment Operators 141
Sorting Arrays 143
Multidimensional Arrays 146
Global Variables 151
Automatic and Static Variables 155
Recursive Functions 158
Exercises 161

8 Working with Structures 163
The Basics of Structures 163
A Structure for Storing the Date 164
Using Structures in Expressions 166
Functions and Structures 169
A Structure for Storing the Time 175
Initializing Structures 178
Compound Literals 178
Arrays of Structures 180
Structures Containing Structures 183
Structures Containing Arrays 185
Structure Variants 189
Exercises 190

9 Character Strings 193
Revisiting the Basics of Strings 193
Arrays of Characters 194

10

11

B%

Variable-Length Character Strings 197
Initializing and Displaying Character Strings 199
Testing Two Character Strings for Equality 202
Inputting Character Strings 204
Single-Character Input 206
The Null String 211

Escape Characters 215

More on Constant Strings 217

Character Strings, Structures, and Arrays 218
A Better Search Method 221

Character Operations 226

Exercises 229

Pointers 233
Pointers and Indirection 233
Defining a Pointer Variable 234
Using Pointers in Expressions 237
Working with Pointers and Structures 239
Structures Containing Pointers 241
Linked Lists 243
The Keyword const and Pointers 251
Pointers and Functions 252
Pointers and Arrays 258
A Slight Digression About Program Optimization 262
Is It an Array or Is It a Pointer? 262
Pointers to Character Strings 264
Constant Character Strings and Pointers 266
The Increment and Decrement Operators Revisited 267
Operations on Pointers 271
Pointers to Functions 272
Pointers and Memory Addresses 273
Exercises 275

Operations on Bits 277
The Basics of Bits 277
Bit Operators 278
The Bitwise AND Operator 279

Vi

viii B*x

The Bitwise Inclusive-OR Operator 281
The Bitwise Exclusive-OR Operator 282
The Ones Complement Operator 283
The Left Shift Operator 285
The Right Shift Operator 286
A Shift Function 286
Rotating Bits 288

Bit Fields 291

Exercises 295

12 The Preprocessor 297

The #define Statement 297
Program Extendability 301
Program Portability 302
More Advanced Types of Definitions 304
The # Operator 309
The ## Operator 310

The #include Statement 311
System Include Files 313

Conditional Compilation 314
The #ifdef, #endif, #else, and #ifndef Statements 314
The #if and #elif Preprocessor Statements 316
The #undef Statement 317

Exercises 318

13 Extending Data Types with the Enumerated Data Type, Type Definitions, and Data
Type Conversions 319

Enumerated Data Types 319
The typedef Statement 323
Data Type Conversions 325
Sign Extension 327
Argument Conversion 328
Exercises 329

14 Working with Larger Programs 331
Dividing Your Program into Multiple Files 331
Compiling Multiple Source Files from the Command Line 332

15

16

B*

Communication Between Modules 334
External Variables 334
static Versus Extern Variables and Functions 337
Using Header Files Effectively 339

Other Utilities for Working with Larger Programs 341
The make Utility 341
The cvs Utility 343
Unix Utilities: ar, grep, sed, and so on 343

Input and Output Operations in C 345
Character |/0: getchar () and putchar() 346
Formatted |/0: printf () and scanf () 346
The printf () Function 346
The scanf () Function 353
Input and Output Operations with Files 358
Redirecting 1/0 to a File 358
End of File 361
Special Functions for Working with Files 362
The fopen Function 362
The getc () and putc () Functions 364
The fclose () Function 365
The feof Function 367
The fprintf () and fscanf () Functions 367
The fgets () and fputs () Functions 367
stdin, stdout, and stderr 368
The exit () Function 369
Renaming and Removing Files 370
Exercises 371

Miscellaneous and Advanced Features 373
Miscellaneous Language Statements 373
The goto Statement 373
The null Statement 374
Working with Unions 375
The Comma Operator 378
Type Qualifiers 379
The register Qualifier 379

=

17

18

The volatile Qualifier 379
The restrict Qualifier 379
Command-line Arguments 380
Dynamic Memory Allocation 384
The calloc () and malloc () Functions 385
The sizeof Operator 385
The free Function 387
Exercises 389

Debugging Programs 391
Debugging with the Preprocessor 391
Debugging Programs with gab 397
Working with Variables 400
Source File Display 401
Controlling Program Execution 402
Getting a Stack Trace 406
Calling Functions and Setting Arrays and Structures 407
Getting Help with gdb Commands 408
Odds and Ends 410

Object-Oriented Programming 413

What Is an Object Anyway? 413

Instances and Methods 414

Writing a C Program to Work with Fractions 416

Defining an Objective-C Class to Work with Fractions 417
Defining a C++ Class to Work with Fractions 421
Dzafining a C# Class to Work with Fractions 424

C Language Summary 427

1.0 Digraphs and Identifiers 427

2.0 Comments 429

3.0 Constants 429

4.0 Data Types and Declarations 432
5.0 Expressions 442

6.0 Storage Classes and Scope 456
7.0 Functions 458

8.0 Statements 460

9.0 The Preprocessor 464

B The Standard C Library 471
Standard Header Files 471
String Functions 474
Memory Functions 475
Character Functions 476
1/0 Functions 477
In-Memory Format Conversion Functions 482
String-to-Number Conversion 483
Dynamic Memory Allocation Functions 484
Math Functions 485
General Utility Functions 493

C Compiling Programs with gcc 495
General Command Format 495
Command-Line Options 496

D Common Programming Mistakes 499

E Resources 505
The C Programming Language 505
C Compilers and Integrated Development Environments 506
Miscellaneous 507

Index 509

B*

Xi

Introduction

The C programming language was pioneered by Dennis Ritchie at AT&T Bell Laboratories in the
early 1970s. It was not until the late 1970s, however, that this programming language began to
gain widespread popularity and support. This was because until that time C compilers were not
readily available for commercial use outside of Bell Laboratories. Initially, C’s growth in popu-
larity was also spurred on in part by the equal, if not faster, growth in popularity of the Unix
operating system. This operating system, which was also developed at Bell Laboratories, had C
as its “standard” programming language. In fact, well over 90% of the operating system itself
was written in the C language!

The enormous success of the IBM PC and its look-alikes soon made MS-DOS the most popular
environment for the C language. As C grew in popularity across different operating systems,
more and more vendors hopped on the bandwagon and started marketing their own C compil-
ers. For the most part, their version of the C language was based on an appendix found in

the first C programming text—The C Programming Language—by Brian Kernighan and Dennis
Ritchie. Unfortunately, this appendix did not provide a complete and unambiguous definition
of C, meaning that vendors were left to interpret some aspects of the language on their own.

In the early 1980s, a need was seen to standardize the definition of the C language. The American
National Standards Institute (ANSI) is the organization that handles such things, so in 1983 an
ANSI C committee (called X3J11) was formed to standardize C. In 1989, the committee’s work
was ratified, and in 1990, the first official ANSI standard definition of C was published.

Because C is used around the world, the International Standard Organization (ISO) soon got
involved. They adopted the standard, where it was called ISO/IEC 9899:1990. Since that time,
additional changes have been made to the C language. The most recent standard was adopted
in 2011. It is known as ANSI C11, or ISO/IEC 9899:2011. It is this version of the language upon
which this book is based.

C is a “higher-level language,” yet it provides capabilities that enable the user to “get in
close” with the hardware and deal with the computer on a much lower level. This is because,
although C is a general-purpose structured programming language, it was originally designed
with systems programming applications in mind and, as such, provides the user with an enor-
mous amount of power and flexibility.

Introduction

This book proposes to teach you how to program in C. It assumes no previous exposure to the
language and was designed to appeal to novice and experienced programmers alike. If you have
previous programming experience, you will find that C has a unique way of doing things that
probably differs from other languages you have used.

Every feature of the C language is treated in this text. As each new feature is presented, a small
complete program example is usually provided to illustrate the feature. This reflects the overrid-
ing philosophy that has been used in writing this book: to teach by example. Just as a picture

is worth a thousand words, so is a properly chosen program example. If you have access to a
computer that supports the C programming language, you are strongly encouraged to down-
load and run each program presented in this book and to compare the results obtained on your
system to those shown in the text. By doing so, not only will you learn the language and its
syntax, but you will also become familiar with the process of typing in, compiling, and running
C programs.

You will find that program readability has been stressed throughout the book. This is because
I strongly believe that programs should be written so that they can be easily read—either by
the author or by somebody else. Through experience and common sense, you will find that
such programs are almost always easier to write, debug, and modify. Furthermore, developing
programs that are readable is a natural result of a true adherence to a structured programming
discipline.

Because this book was written as a tutorial, the material covered in each chapter is based on
previously presented material. Therefore, maximum benefit will be derived from this book by
reading each chapter in succession, and you are highly discouraged from “skipping around.”
You should also work through the exercises that are presented at the end of each chapter before
proceeding on to the next chapter.

Chapter 1, “Some Fundamentals,” which covers some fundamental terminology about higher-
level programming languages and the process of compiling programs, has been included to
ensure that you understand the language used throughout the remainder of the text. From
Chapter 2, “Compiling and Running Your First Program,” on, you will be slowly introduced to
the C language. By the time Chapter 15, “Input and Output Operations in C,” rolls around, all
the essential features of the language will have been covered. Chapter 15 goes into more depth
about I/O operations in C. Chapter 16, “Miscellaneous and Advanced Features,” includes those
features of the language that are of a more advanced or esoteric nature.

Chapter 17, “Debugging Programs,” shows how you can use the C preprocessor to help debug
your programs. It also introduces you to interactive debugging. The popular debugger gdb was
chosen to illustrate this debugging technique.

Over the last decade, the programming world has been abuzz with the notion of object-
oriented programming, or OOP for short. C is not an OOP language; however, several other
programming languages that are based on C are OOP languages. Chapter 18, “Object-oriented
Programming,” gives a brief introduction to OOP and some of its terminology. It also gives a
brief overview of three OOP languages that are based on C, namely C++, C#, and Objective-C.

Introduction

Appendix A, “C Language Summary,” provides a complete summary of the language and is
provided for reference purposes.

Appendix B, “The Standard C Library,” provides a summary of many of the standard library
routines that you will find on all systems that support C.

Appendix C, “Compiling Programs with gcc,” summarizes many of the commonly used
options when compiling programs with GNU’s C compiler gcc.

In Appendix D, “Common Programming Mistakes,” you'll find a list of common programming
mistakes.

Finally, Appendix E, “Resources,” provides a list of resources you can turn to for more informa-
tion about the C language and to further your studies.

This book makes no assumptions about a particular computer system or operating system on
which the C language is implemented. The text makes brief mention of how to compile and
execute programs using the popular GNU C compiler gce.

