Broadview PEARSON CRIRAER PR

www.broadview.com.cn

‘l' e Ct 1VC
(ZB6hR)

&

Programming in

e e e R e
Stephen G. Kochan =

Objective-C

wwwwwwwwwwwwwwwwwwww

- RARBmBER -

Objective-C #ywistit:
(36hk)

Programming in Objective-C (6th Edition)

[%] Stephen G. Kochan &

% F I 4 & AR A2
Publishing House of Electronics Industry
1E5{-BEIJING

Sy
A4S R H{ESER i0S Fi OS X B4 -, {#JH Objective-C i & Flifi 7] o G R Y i s T 2l AF
BT I EIA T, AR T R R RS S C IR B R, PAPRBE)
2oy e aaIA R R R R A IR AN Sl 2] Objective-C, A5 ik~ 2] B, B
A e B R R R S, E A AR, 6 AW E T, T Objective-C T
G GHA, [54T R Xcode, i0S Fil Mac OS X Mavericks [J/T 48,

Original edition, entitled Implementing Programming in Objective-C, 6e, 032 1967607, by Stephen G. Kochan,
published by Pearson Education, Inc., publishing as Addison-Wesley Professional, Copyright©2014 Pearson
Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

45 3 ST RS ENR 5 A5 UM i Pearson Education Az SR R IE N AT PR 2% w42 1L Toll ikl
k. RHME TS E VAT, A ELME 5 R b B A I iR 2y .

A (PR b [N R E AR, BB A E G S X)) HERT.
A4S ¥ EI MU A Pearson Education B A3 F HARSE BRI (Abr%E, TohRZEE AR Hit
WOk 5 A R IE S 9. 01-2015-5602

BHERRE (CP) XiB

Objective-C F2/F %1t : % 6 hit =Programming in Objective-C (6th Edition): 93¢/ (3) 5% 45 (Kochan,S.G.)
% . B Lok ihRE:, 20164

(AR5 &)

ISBN 978-7-121-27275-2

L @O @ 5e-1L @ CiEg - Bkt — 3 v. O TP312

o EI R A 51 CIP Bl (2015) 55 229093

R GhR . kA
T EamER: RECE
B R =il e & A R A]
4T =PTEREN S AR
Wk % 7 M- Lol b
JemihigiEx b AR 173 (58 BB%: 100036
F A 787x980 1/16 Ep5k. 34 ¥ . 816 T
I K 2016 4R 4 A LRR
El k. 2016 4E 4 A58 1 IRENR
E fr: 99.00 T

FL I S5 HL - Tl G P 5 e) B, 0 e TS DA, A R B, i AR R AT AR
2 NP ig . (010) 88254888,

e B P i % & B 1 % zlts@phei.com.cn, @RRIRAL 4RI K ML PF% dbgq@phei.com.cn,

R4k, (010) 88258888,

H %

1 Introduction 1
What You Will Learn from This Book 2
How This Book Is Organized 3
Support 5
Acknowledgments 5
Preface to the Sixth Edition 6

I: The Objective-C Language

2 Programming in Objective-C 7
Compiling and Running Programs 7
Using Xcode 8
Using Terminal 16
Explanation of Your First Program 18
Displaying the Values of Variables 22
Summary 25
Exercises 25

3 Classes, Objects, and Methods 27
What Is an Object, Anyway? 27
Instances and Methods 28
An Objective-C Class for Working with Fractions 30
The @interface Section 33
Choosing Names 34
Class and Instance Methods 35
The @implementation Section 37
The program Section 39
Accessing Instance Variables and Data Encapsulation 45
Summary 49
Exercises 49

4 Data Types and Expressions 51
Data Types and Constants 51
Type int 51
Type float 52

Type char 52

Qualifiers: long, long long, short, unsigned, and

signed 53
Type id 54
Arithmetic Expressions 55
Operator Precedence 55
Integer Arithmetic and the Unary Minus Operator 58
The Modulus Operator 60
Integer and Floating-Point Conversions 61
The Type Cast Operator 63
Assignment Operators 64
A Calculator Class 65
Exercises 67

Program Looping 71
The for Statement 72
Keyboard Input 79
Nested for Loops 81
for Loop Variants 83
The while Statement 84
The do Statement 89
The break Statement 91
The continue Statement 91
Summary 91
Exercises 92

Making Decisions 93
The if Statement 93
The if-else Construct 98
Compound Relational Tests 101
Nested if Statements 104
The else if Construct 105
The switch Statement 115
Boolean Variables 118
The Conditional Operator 123
Exercises 125

B %

Vi

E

7

More on Classes 127
Separate Interface and Implementation Files 127
Synthesized Accessor Methods 133
Accessing Properties Using the Dot Operator 135
Multiple Arguments to Methods 137
Methods without Argument Names 139
Operations on Fractions 139
Local Variables 143
Method Arguments 144
The static Keyword 144
The self Keyword 148
Allocating and Returning Objects from Methods 149
Extending Class Definitions and the Interface File 151
Exercises 151

Inheritance 153
It All Begins at the Root 153
Finding the Right Method 157
Extension through Inheritance: Adding New Methods 158
A Point Class and Object Allocation 162
The @class Directive 163
Classes Owning Their Objects 167
Overriding Methods 171
Which Method Is Selected? 173
Abstract Classes 176
Exercises 176

Polymorphism, Dynamic Typing, and Dynamic Binding 179
Polymorphism: Same Name, Different Class 179
Dynamic Binding and the id Type 182
Compile Time Versus Runtime Checking 184
The id Data Type and Static Typing 185
Argument and Return Types with Dynamic Typing 186
Asking Questions about Classes 187
Exception Handling Using @try 192
Exercises 195

10

11

12

B

More on Variables and Data Types 197
Initializing Objects 197
Scope Revisited 200

More on Properties, Synthesized Accessors, and Instance
Variables 201

Global Variables 202
Static Variables 204

Enumerated Data Types 207
The typedef Statement 210
Data Type Conversions 211

Conversion Rules 212
Bit Operators 213
The Bitwise AND Operator 215
The Bitwise Inclusive-OR Operator 216
The Bitwise Exclusive-OR Operator 216
The Ones Complement Operator 217
The Left-Shift Operator 218
The Right-Shift Operator 219
Exercises 220

Categories and Protocols 223
Categories 223
Class Extensions 228
Some Notes about Categories 229
Protocols and Delegation 230
Delegation 233
Informal Protocols 233
Composite Objects 234
Exercises 235

The Preprocessor 237
The #define Statement 237

More Advanced Types of Definitions 239
The #import Statement 244

vii

viii Hx

Conditional Compilation 245
The #ifdef, #endif, #else, and #ifndef Statements 245
The #if and #elif Preprocessor Statements 247
The #undef Statement 248

Exercises 249

13 Underlying C Language Features 251
Arrays 252
Initializing Array Elements 254
Character Arrays 255
Multidimensional Arrays 256
Functions 258
Arguments and Local Variables 259
Returning Function Results 261
Functions, Methods, and Arrays 265
Blocks 266
« Structures 270
Initializing Structures 273
Structures within Structures 274
Additional Details about Structures 276
Don't Forget about Object-Oriented Programming! 277
Pointers 277
Pointers and Structures 281
Pointers, Methods, and Functions 283
Pointers and Arrays 284
Operations on Pointers 294
Pointers and Memory Addresses 296
They're Not Objects! 297
Miscellaneous Language Features 297
Compound Literals 297
The goto Statement 298
The Null Statement 298
The Comma Operator 299
The sizeof Operator 299
Command-Line Arguments 300

Bx

How Things Work 302
Fact 1: Instance Variables Are Stored in Structures 303
Fact 2: An Object Variable Is Really a Pointer 303

Fact 3: Methods Are Functions, and Message Expressions Are Function
Calls 304

Fact 4: The id Type Is a Generic Pointer Type 304
Exercises 304

Il: The Foundation Framework

14 |Introduction to the Foundation Framework 307
Foundation Documentation 307

15 Numbers, Strings, and Collections 311

Number Objects 311

String Objects 317
More on the NSLog Function 317
The description Method 318
Mutable Versus Immutable Objects 319
Mutable Strings 326

Array Objects 333
Making an Address Book 338
Sorting Arrays 355

Dictionary Objects 362
Enumerating a Dictionary 364

Set Objects 367
NSIndexSet 371

Exercises 373

16 Working with Files 377

Managing Files and Directories: NSFileManager 378
Working with the NSData Class 383
Working with Directories 384
Enumerating the Contents of a Directory 387

Working with Paths: NSPathUtilities.h 389
Common Methods for Working with Paths 392
Copying Files and Using the NSProcessInfo Class 394

Hx

17

18

19

Basic File Operations: NSFileHandle 398
The NSURL Class 403

The NSBundle Class 404

Exercises 405

Memory Management and Automatic Reference Counting 407

Automatic Garbage Collection 409

Manual Reference Counting 409
Object References and the Autorelease Pool 410

The Event Loop and Memory Allocation 412

Summary of Manual Memory Management Rules 414

Automatic Reference Counting 415

Strong Variables 415

Weak Variables 416

@autoreleasepool Blocks 417

Method Names and Non-ARC Compiled Code 418

Copying Objects 419

The copy and mutableCopy Methods 419
Shallow Versus Deep Copying 422

Implementing the <NSCopyings> Protocol 424
Copying Objects in Setter and Getter Methods 427
Exercises 429

Archiving 431

Archiving with XML Property Lists 431
Archiving with NSKeyedArchiver 434
Writing Encoding and Decoding Methods 435
Using NSData to Create Custom Archives 442
Using the Archiver to Copy Objects 446
Exercises 447

B3xX

I1l: Cocoa, Cocoa Touch, and the i0OS SDK

20

21

Introduction to Cocoa and Cocoa Touch 449
Framework Layers 449
Cocoa Touch 450

Writing i0OS Applications 453

The iOS SDK 453

Your First iPhone Application 453
Creating a New iPhone Application Project 456
Entering Your Code 460
Designing the Interface 462

An iPhone Fraction Calculator 469
Starting the New Fraction_Calculator Project 471
Defining the View Controller 471
The Fraction Class 477
A calculator Class That Deals with Fractions 480
Designing the User Interface 482

Summary 483

Exercises 484

Appendixes

A Glossary 485

B Address Book Example Source Code 493

Index 499

Xi

Introduction

Dennis Ritchie at AT&T Bell Laboratories pioneered the C programming language in the early
1970s. However, this programming language did not begin to gain widespread popularity and
support until the late 1970s. This was because, until that time, C compilers were not readily
available for commercial use outside of Bell Laboratories. Initially, this growth in popularity
was also partly spurred by the equal, if not faster, growth in popularity of the UNIX operating
system, which was written almost entirely in C.

Brad J. Cox designed the Objective-C language in the early 1980s. The language was based on a
language called SmallTalk-80. Objective-C was layered on top of the C language, meaning that
extensions were added to C to create a new programming language that enabled objects to be
created and manipulated.

NeXT Software licensed the Objective-C language in 1988 and developed its libraries and

a development environment called NEXTSTEP. In 1992, Objective-C support was added to

the Free Software Foundation’s GNU development environment. The copyrights for all Free
Software Foundation (FSF) products are owned by the FSFE. It is released under the GNU General
Public License.

In 1994, NeXT Computer and Sun Microsystems released a standardized specification of
the NEXTSTEP system, called OPENSTEP. The FSF’s implementation of OPENSTEP is called
GNUStep. A Linux version, which also includes the Linux kernel and the GNUStep develop-
ment environment, is called, appropriately enough, LinuxSTEP.

On December 20, 1996, Apple Computer announced that it was acquiring NeXT Software, and
the NEXTSTEP/OPENSTEP environment became the basis for the next major release of Apple’s
operating system, OS X. Apple’s version of this development environment was called Cocoa.
‘With built-in support for the Objective-C language, coupled with development tools such as
Project Builder (or its successor Xcode) and Interface Builder, Apple created a powerful develop-
ment environment for application development on Mac OS X.

In 2007, Apple released an update to the Objective-C language and labeled it Objective-C 2.0.
That version of the language formed the basis for the second edition of the book.

Chapter 1 Introduction

When the iPhone was released in 2007, developers clamored for the opportunity to develop
applications for this revolutionary device. At first, Apple did not welcome third-party applica-
tion development. The company’s way of placating wannabe iPhone developers was to allow
them to develop Web-based applications. A Web-based application runs under the iPhone’s
built-in Safari Web browser and requires the user to connect to the website that hosts the appli-
cation in order to run it. Developers were not satisfied with the many inherent limitations of
Web-based applications, and Apple shortly thereafter announced that developers would be able
to develop so-called native applications for the iPhone.

A native application is one that resides on the iPhone and runs under the iPhone’s operating
system, in the same way that the iPhone’s built-in applications (such as Contacts, Stocks, and
Weather) run on the device. The iPhone’s OS is actually a version of OS X, which means that
applications can be developed and debugged on a MacBook Pro, for example. In fact, Apple
soon provided a powerful software development kit (SDK) that allowed for rapid iPhone appli-
cation development and debugging. The availability of an iPhone simulator made it possible
for developers to debug their applications directly on their development system, obviating the
need to download and test the program on an actual iPhone or iPod touch device.

With the introduction of the iPad in 2010, Apple started to genericize the terminology used
for the operating system and the SDK that now support different devices with different physi-
cal sizes and screen resolutions. The iOS SDK allows you to develop applications for any iOS
device, and as of this writing, iOS 7 is the current release of the operating system.

What You Will Learn from This Book

When I contemplated writing a tutorial on Objective-C, I had to make a fundamental decision.
As with other texts on Objective-C, I could write mine to assume that the reader already knew
how to write C programs. I could also teach the language from the perspective of using the
rich library of routines, such as the Foundation and UIKit frameworks. Some texts also take the
approach of teaching how to use the development tools, such as the Mac’s Xcode and the tool
formerly known as Interface Builder to design the UI.

I had several problems adopting this approach. First, learning the entire C language before
learning Objective-C is wrong. C is a procedural language containing many features that are not
necessary for programming in Objective-C, especially at the novice level. In fact, resorting to
some of these features goes against the grain of adhering to a good object-oriented program-
ming methodology. It’s also not a good idea to learn all the details of a procedural language
before learning an object-oriented one. This starts the programmer in the wrong direction, and
gives the wrong orientation and mindset for fostering a good object-oriented programming
style. Just because Objective-C is an extension to the C language doesn’t mean you have to
learn C first.

So, I decided neither to teach C first nor to assume prior knowledge of the language. Instead,
I decided to take the unconventional approach of teaching Objective-C and the underlying C
language as a single integrated language, from an object-oriented programming perspective.

The purpose of this book is, as its name implies, to teach you how to program in Objective-C.

How This Book |s Organized

It does not profess to teach you in detail how to use the development tools that are available
for entering and debugging programs, or to provide in-depth instructions on how to develop
interactive graphical applications. You can learn all that material in greater detail elsewhere,
after you have learned how to write programs in Objective-C. In fact, you will find mastering
that material much easier when you have a solid foundation of how to program in Objective-C.
This book does not assume much, if any, previous programming experience. In fact, if you

are a novice programmer, with some dedication and hard work you should be able to learn
Objective-C as your first programming language. Other readers have been successful at this,
based on the feedback I have received from the previous editions of this book.

This book teaches Objective-C by example. As I present each new feature of the language, 1
usually provide a small complete program example to illustrate the feature. Just as a picture is
worth a thousand words, so is a properly chosen program example. You are strongly encour-
aged to run each program and compare the results obtained on your system to those shown
in the text. By doing so, you will learn the language and its syntax, but you will also become
familiar with the process of compiling and running Objective-C programs.

How This Book Is Organized

This book is divided into three logical parts. Part I, “The Objective-C Language,” teaches the
essentials of the language. Part II, “The Foundation Framework,” teaches how to use the rich
assortment of predefined classes that form the Foundation framework. Part III, “Cocoa, Cocoa
Touch, and the iOS SDK,” gives you an overview of the Cocoa and Cocoa Touch frameworks
and then walks you through the process of developing a simple iOS application using the iOS
SDK.

A framework is a set of classes and routines that have been logically grouped together to make
developing programs easier. Much of the power of programming in Objective-C rests on the
extensive frameworks that are available.

Chapter 2, “Programming in Objective-C,” begins by teaching you how to write your first
program in Objective-C.

Because this is not a book on Cocoa or iOS programming, graphical user interfaces (GUIs)

are not extensively taught and are hardly even mentioned until Part III. So, an approach was
needed to get input into a program and produce output. Most of the examples in this text take
input from the keyboard and produce their output in a window pane: a Terminal window if
you're using the command line, or a debug output pane if you're using Xcode.

Chapter 3, “Classes, Objects, and Methods,” covers the fundamentals of object-oriented
programming. This chapter introduces some terminology, but it is kept to a minimum. I also
introduce the mechanism for defining a class and the means for sending messages to instances
or objects. Instructors and seasoned Objective-C programmers will notice that I use static typing
for declaring objects. I think this is the best way for the student to get started because the
compiler can catch more errors, making the programs more self-documenting and encourag-
ing the new programmer to explicitly declare the data types when they are known. As a result,

Chapter 1 Introduction

the notion of the id type and its power is not fully explored until Chapter 9, “Polymorphism,
Dynamic Typing, and Dynamic Binding.”

Chapter 4, “Data Types and Expressions,” describes the basic Objective-C data types and how to
use them in your programs.

Chapter 5, “Program Looping,” introduces the three looping statements you can use in your
programs: for, while, and do.

Making decisions is fundamental to any computer programming language. Chapter 6, “Making
Decisions,” covers the Objective-C language’s if and switch statements in detail.

Chapter 7, “More on Classes,” delves more deeply into working with classes and objects. Details
about methods, multiple arguments to methods, and local variables are discussed here.

Chapter 8, “Inheritance,” introduces the key concept of inheritance. This feature makes the
development of programs easier because you can take advantage of what comes from above.
Inheritance and the notion of subclasses make modifying and extending existing class defini-
tions easy.

Chapter 9 discusses three fundamental characteristics of the Objective-C language.
Polymorphism, dynamic typing, and dynamic binding are the key concepts covered here.

Chapters 10-13 round out the discussion of the Objective-C language, covering issues such as
initialization of objects, blocks, protocols, categories, the preprocessor, and some of the under-
lying C features, including functions, arrays, structures, and pointers. These underlying features
are often unnecessary (and often best avoided) when first developing object-oriented applica-
tions. It's recommended that you skim Chapter 13, “Underlying C Language Features,” the first
time through the text and return to it only as necessary to learn more about a particular feature
of the language. Chapter 13 also introduces a recent addition to the C language known as
blocks. This should be learned after you learn about how to write functions, since the syntax of
the former is derived from the latter.

Part I begins with Chapter 14, “Introduction to the Foundation Framework,” which gives an
introduction to the Foundation framework and how to use its voluminous documentation.

Chapters 15-19 cover important features of the Foundation framework. These include number
and string objects, collections, the file system, memory management, and the process of
copying and archiving objects.

By the time you're done with Part II, you will be able to develop fairly sophisticated programs
in Objective-C that work with the Foundation framework.

Part I1I starts with Chapter 20, “Introduction to Cocoa and Cocoa Touch.” Here you get a quick
overview of the frameworks that provide the classes you need to develop sophisticated graphi-
cal applications on the Mac and on your iOS devices.

Chapter 21, “Writing iOS Applications,” introduces the iOS SDK and the UIKit framework.
This chapter illustrates a step-by-step approach to writing a simple iOS application, followed

Acknowledgments

by a more sophisticated calculator application that enables you to use your iPhone to perform
simple arithmetic calculations with fractions.

Because object-oriented parlance involves a fair amount of terminology, Appendix A,
“Glossary,” provides definitions of some common terms.

Appendix B, “Address Book Example Source Code,” gives the source code listing for two classes

that are developed and used extensively in Part II of this text. These classes define address card

and address book classes. Methods enable you to perform simple operations such as adding and
removing address cards from the address book, looking up someone, listing the contents of the
address book, and so on.

After you've learned how to write Objective-C programs, you can go in several directions. You
might want to learn more about the underlying C programming language, or you might want
to start writing Cocoa programs to run on OS X, or you might want to develop more-sophisti-
cated iOS applications.

Support

If you go to classroomM.com/objective-c, you'll find a forum rich with content. There you

can get some source code (note that you won't find the “official” source code for all the
examples there; I firmly believe that a big part of the learning process occurs when you type in
the program examples yourself and learn how to identify and correct any errors), answers to
exercises, errata, and quizzes; you can also pose questions to me and fellow forum members.
The forum has turned into a rich community of active members who are happy to help other
members solve their problems and answer their questions. Please go, join, and participate!

Acknowledgments

I would like to acknowledge several people for their help in the preparation of the first edition
of this text. First, I want to thank Tony lannino and Steven Levy for reviewing the manuscript.
I am also grateful to Mike Gaines for providing his input.

I'd also like to thank my technical editors, Jack Purdum (first edition), Wendy Mui (third
edition), and Mike Trent (first, second, fifth, and sixth editions). [was particularly lucky to
have Mike review the first two editions of this text. He provided the most thorough review of
any book I've ever written. Not only did he point out weaknesses, but he was also generous
enough to offer his suggestions. Because of Mike’s comments in the first edition, I changed my
approach to teaching memory management and tried to make sure that every program example
in this book was “leak free.” This was prior to the fourth edition, where the strong emphasis

on memory management became obsolete with the introduction of ARC. Mike also provided
invaluable input for my chapter on iOS programming.

Chapter 1 Introduction

From the first edition, Catherine Babin supplied the cover photograph and provided me with
many wonderful pictures to choose from. Having the cover art from a friend made the book
even more special.

I am so grateful to Mark Taber (for all editions) from Pearson for putting up with all delays and
for being kind enough to work around my schedule and to tolerate my consistent missing of
deadlines. The same kudos to Mandie Frank from Pearson. Mandie has worked tirelessly with
my late deliveries to help get various editions of this book out on time. [am extremely grateful
to Michael de Haan and Wendy Mui for doing an incredible, unsolicited job proofreading the
first printing of the second edition.

As noted at the start of this Introduction, Dennis Ritchie invented the C language. He was also
a co-inventor of the Unix operating system, which is the foundation for OS X and iOS. Sadly,
the world lost both Dennis Ritchie and Steve Jobs within the span of a week in 2011. These two
people had a profound effect on my career; this book would not exist if not for them.

Finally, I'd like to thank the members of the forum at classroomM.com/objective-c for all their
feedback, support, and kind words.

Preface to the Sixth Edition

Not much has changed since the previous edition. Xcode $ was introduced, and so all the
screenshots have been updated. I've needed to do this so that novices can follow along with
current screenshots and not get lost before even getting started! There are also some minor
additions to the language, which are reflected in this edition.

Stephen G. Kochan
October 2013

