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Introduction

Dennis Ritchie at AT&T Bell Laboratories pioneered the C programming language in the early
1970s. However, this programming language did not begin to gain widespread popularity and
support until the late 1970s. This was because, until that time, C compilers were not readily
available for commercial use outside of Bell Laboratories. Initially, this growth in popularity
was also partly spurred by the equal, if not faster, growth in popularity of the UNIX operating
system, which was written almost entirely in C.

Brad J. Cox designed the Objective-C language in the early 1980s. The language was based on a
language called SmallTalk-80. Objective-C was layered on top of the C language, meaning that
extensions were added to C to create a new programming language that enabled objects to be
created and manipulated.

NeXT Software licensed the Objective-C language in 1988 and developed its libraries and

a development environment called NEXTSTEP. In 1992, Objective-C support was added to

the Free Software Foundation’s GNU development environment. The copyrights for all Free
Software Foundation (FSF) products are owned by the FSFE. It is released under the GNU General
Public License.

In 1994, NeXT Computer and Sun Microsystems released a standardized specification of
the NEXTSTEP system, called OPENSTEP. The FSF’s implementation of OPENSTEP is called
GNUStep. A Linux version, which also includes the Linux kernel and the GNUStep develop-
ment environment, is called, appropriately enough, LinuxSTEP.

On December 20, 1996, Apple Computer announced that it was acquiring NeXT Software, and
the NEXTSTEP/OPENSTEP environment became the basis for the next major release of Apple’s
operating system, OS X. Apple’s version of this development environment was called Cocoa.
‘With built-in support for the Objective-C language, coupled with development tools such as
Project Builder (or its successor Xcode) and Interface Builder, Apple created a powerful develop-
ment environment for application development on Mac OS X.

In 2007, Apple released an update to the Objective-C language and labeled it Objective-C 2.0.
That version of the language formed the basis for the second edition of the book.
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When the iPhone was released in 2007, developers clamored for the opportunity to develop
applications for this revolutionary device. At first, Apple did not welcome third-party applica-
tion development. The company’s way of placating wannabe iPhone developers was to allow
them to develop Web-based applications. A Web-based application runs under the iPhone’s
built-in Safari Web browser and requires the user to connect to the website that hosts the appli-
cation in order to run it. Developers were not satisfied with the many inherent limitations of
Web-based applications, and Apple shortly thereafter announced that developers would be able
to develop so-called native applications for the iPhone.

A native application is one that resides on the iPhone and runs under the iPhone’s operating
system, in the same way that the iPhone’s built-in applications (such as Contacts, Stocks, and
Weather) run on the device. The iPhone’s OS is actually a version of OS X, which means that
applications can be developed and debugged on a MacBook Pro, for example. In fact, Apple
soon provided a powerful software development kit (SDK) that allowed for rapid iPhone appli-
cation development and debugging. The availability of an iPhone simulator made it possible
for developers to debug their applications directly on their development system, obviating the
need to download and test the program on an actual iPhone or iPod touch device.

With the introduction of the iPad in 2010, Apple started to genericize the terminology used
for the operating system and the SDK that now support different devices with different physi-
cal sizes and screen resolutions. The iOS SDK allows you to develop applications for any iOS
device, and as of this writing, iOS 7 is the current release of the operating system.

What You Will Learn from This Book

When I contemplated writing a tutorial on Objective-C, I had to make a fundamental decision.
As with other texts on Objective-C, I could write mine to assume that the reader already knew
how to write C programs. I could also teach the language from the perspective of using the
rich library of routines, such as the Foundation and UIKit frameworks. Some texts also take the
approach of teaching how to use the development tools, such as the Mac’s Xcode and the tool
formerly known as Interface Builder to design the UI.

I had several problems adopting this approach. First, learning the entire C language before
learning Objective-C is wrong. C is a procedural language containing many features that are not
necessary for programming in Objective-C, especially at the novice level. In fact, resorting to
some of these features goes against the grain of adhering to a good object-oriented program-
ming methodology. It’s also not a good idea to learn all the details of a procedural language
before learning an object-oriented one. This starts the programmer in the wrong direction, and
gives the wrong orientation and mindset for fostering a good object-oriented programming
style. Just because Objective-C is an extension to the C language doesn’t mean you have to
learn C first.

So, I decided neither to teach C first nor to assume prior knowledge of the language. Instead,
I decided to take the unconventional approach of teaching Objective-C and the underlying C
language as a single integrated language, from an object-oriented programming perspective.

The purpose of this book is, as its name implies, to teach you how to program in Objective-C.



How This Book |s Organized

It does not profess to teach you in detail how to use the development tools that are available
for entering and debugging programs, or to provide in-depth instructions on how to develop
interactive graphical applications. You can learn all that material in greater detail elsewhere,
after you have learned how to write programs in Objective-C. In fact, you will find mastering
that material much easier when you have a solid foundation of how to program in Objective-C.
This book does not assume much, if any, previous programming experience. In fact, if you

are a novice programmer, with some dedication and hard work you should be able to learn
Objective-C as your first programming language. Other readers have been successful at this,
based on the feedback I have received from the previous editions of this book.

This book teaches Objective-C by example. As I present each new feature of the language, 1
usually provide a small complete program example to illustrate the feature. Just as a picture is
worth a thousand words, so is a properly chosen program example. You are strongly encour-
aged to run each program and compare the results obtained on your system to those shown
in the text. By doing so, you will learn the language and its syntax, but you will also become
familiar with the process of compiling and running Objective-C programs.

How This Book Is Organized

This book is divided into three logical parts. Part I, “The Objective-C Language,” teaches the
essentials of the language. Part II, “The Foundation Framework,” teaches how to use the rich
assortment of predefined classes that form the Foundation framework. Part III, “Cocoa, Cocoa
Touch, and the iOS SDK,” gives you an overview of the Cocoa and Cocoa Touch frameworks
and then walks you through the process of developing a simple iOS application using the iOS
SDK.

A framework is a set of classes and routines that have been logically grouped together to make
developing programs easier. Much of the power of programming in Objective-C rests on the
extensive frameworks that are available.

Chapter 2, “Programming in Objective-C,” begins by teaching you how to write your first
program in Objective-C.

Because this is not a book on Cocoa or iOS programming, graphical user interfaces (GUIs)

are not extensively taught and are hardly even mentioned until Part III. So, an approach was
needed to get input into a program and produce output. Most of the examples in this text take
input from the keyboard and produce their output in a window pane: a Terminal window if
you're using the command line, or a debug output pane if you're using Xcode.

Chapter 3, “Classes, Objects, and Methods,” covers the fundamentals of object-oriented
programming. This chapter introduces some terminology, but it is kept to a minimum. I also
introduce the mechanism for defining a class and the means for sending messages to instances
or objects. Instructors and seasoned Objective-C programmers will notice that I use static typing
for declaring objects. I think this is the best way for the student to get started because the
compiler can catch more errors, making the programs more self-documenting and encourag-
ing the new programmer to explicitly declare the data types when they are known. As a result,
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the notion of the id type and its power is not fully explored until Chapter 9, “Polymorphism,
Dynamic Typing, and Dynamic Binding.”

Chapter 4, “Data Types and Expressions,” describes the basic Objective-C data types and how to
use them in your programs.

Chapter 5, “Program Looping,” introduces the three looping statements you can use in your
programs: for, while, and do.

Making decisions is fundamental to any computer programming language. Chapter 6, “Making
Decisions,” covers the Objective-C language’s if and switch statements in detail.

Chapter 7, “More on Classes,” delves more deeply into working with classes and objects. Details
about methods, multiple arguments to methods, and local variables are discussed here.

Chapter 8, “Inheritance,” introduces the key concept of inheritance. This feature makes the
development of programs easier because you can take advantage of what comes from above.
Inheritance and the notion of subclasses make modifying and extending existing class defini-
tions easy.

Chapter 9 discusses three fundamental characteristics of the Objective-C language.
Polymorphism, dynamic typing, and dynamic binding are the key concepts covered here.

Chapters 10-13 round out the discussion of the Objective-C language, covering issues such as
initialization of objects, blocks, protocols, categories, the preprocessor, and some of the under-
lying C features, including functions, arrays, structures, and pointers. These underlying features
are often unnecessary (and often best avoided) when first developing object-oriented applica-
tions. It's recommended that you skim Chapter 13, “Underlying C Language Features,” the first
time through the text and return to it only as necessary to learn more about a particular feature
of the language. Chapter 13 also introduces a recent addition to the C language known as
blocks. This should be learned after you learn about how to write functions, since the syntax of
the former is derived from the latter.

Part I begins with Chapter 14, “Introduction to the Foundation Framework,” which gives an
introduction to the Foundation framework and how to use its voluminous documentation.

Chapters 15-19 cover important features of the Foundation framework. These include number
and string objects, collections, the file system, memory management, and the process of
copying and archiving objects.

By the time you're done with Part II, you will be able to develop fairly sophisticated programs
in Objective-C that work with the Foundation framework.

Part I1I starts with Chapter 20, “Introduction to Cocoa and Cocoa Touch.” Here you get a quick
overview of the frameworks that provide the classes you need to develop sophisticated graphi-
cal applications on the Mac and on your iOS devices.

Chapter 21, “Writing iOS Applications,” introduces the iOS SDK and the UIKit framework.
This chapter illustrates a step-by-step approach to writing a simple iOS application, followed
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by a more sophisticated calculator application that enables you to use your iPhone to perform
simple arithmetic calculations with fractions.

Because object-oriented parlance involves a fair amount of terminology, Appendix A,
“Glossary,” provides definitions of some common terms.

Appendix B, “Address Book Example Source Code,” gives the source code listing for two classes

that are developed and used extensively in Part II of this text. These classes define address card

and address book classes. Methods enable you to perform simple operations such as adding and
removing address cards from the address book, looking up someone, listing the contents of the
address book, and so on.

After you've learned how to write Objective-C programs, you can go in several directions. You
might want to learn more about the underlying C programming language, or you might want
to start writing Cocoa programs to run on OS X, or you might want to develop more-sophisti-
cated iOS applications.

Support

If you go to classroomM.com/objective-c, you'll find a forum rich with content. There you

can get some source code (note that you won't find the “official” source code for all the
examples there; I firmly believe that a big part of the learning process occurs when you type in
the program examples yourself and learn how to identify and correct any errors), answers to
exercises, errata, and quizzes; you can also pose questions to me and fellow forum members.
The forum has turned into a rich community of active members who are happy to help other
members solve their problems and answer their questions. Please go, join, and participate!
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Preface to the Sixth Edition

Not much has changed since the previous edition. Xcode $ was introduced, and so all the
screenshots have been updated. I've needed to do this so that novices can follow along with
current screenshots and not get lost before even getting started! There are also some minor
additions to the language, which are reflected in this edition.

Stephen G. Kochan
October 2013



