| Broadwew PEARSON - BREmPE

www.broadview.com.cn

Eftective Ruby
i %’:}ﬁERubyﬁilii}BMS"ﬁ BOTE

E‘,fls ctive Ruby

[5] Peter J. Jones & iffective

.......................

T BRERREAHTS S >k ey £ A ts

RIREmRBER -

Effectlve Ruby:

_A

)

i i Ruby RS IA8 B 3475 1

Effective RUby: 48 Specific Ways to Write Better Ruby

[5€] Peter J. Jones &

% F I Y &AL
Publishing House of Electronics Industry
13 BELING

SRy

A5 1# Peter . Jones iff 4 Ruby Jf- & 2045 . 35+ 24 Ruby & HYAA F- G it T
PSRl TR, MRS AT, FRICHREE, TE&FIA 48 /> Ruby SR, 487~ T Ruby B4 A
WA . et hBE, DAR SRR AT AR TAR B stk . A RPec i iR & T BRI, K
Fff . dLERismids e, MmEE, VEMME L FE i, DARGER RIS VR,

45 S TR I 4 1 AT 24 Ruby ZafaiiA, #3Bh Ruby B 5 R Z24i4 5 H B et wa&dk, €5
A s THI RS,
Original edition, entitled Effective Ruby: 48 Specific Ways to Write Better Ruby, 1E, 9780133846973 by Pe-

ter J. Jones, published by Pearson Education, Inc., publishing as Addison-Wesley, Copyright © 2015 Pearson
Education,Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

A4 3 BLEN IR A5 M MR Y Pearson Education 1% Az 2 77 Hi RO A5 PR 23 w14 T i Tk Hikik
i, R2HMREFEBEIET, AELMERE AR flSZAR-BRIEMES

A IR AR CREAEEEE, B BT A G IR) LT,
ARG EIRGAT Pearson Education ok S0P HURUHSHIBOL B bR , Tohwiok 1o RpHifE
HERLTA 5 A RIS 9, 01-2015-6092

EBERRE (OP) 218

Effective Ruby; %5 & i & Ruby fUHDHY 48 />4 728 i =Effective Ruby: 48 Specific Ways to Write Better
Ruby, 1E; #3¢/ (%) BHF (Jones,PJ.) . —dbit. s+ Tilkist, 20164

(JERERER)

ISBN 978-7-121-27306-3

L OE-1L @ F-10L @ HEPLIRL — Bkt - 3301V, O TP393.09

o [A PE A5 1 CIP $edid% 3 (2015) 5 231525 5

Hgmig: kEM X ZF
TG TRECTE
Bl Rl = darhondidg ERIRETT A PR 2 &
B 3T iR ERIEETT A PR 2w
bRk %47 B Tk R
Jbs i X A 173 (55 HE 4. 100036
o A%, 787x9801/16 EMk. 1425 . 275 TF
Bk k. 20164FE 4 A% 1R
El - k. 2016 45 4 A% 1 RENRI
£ Pr: 65.00 7

FUFFIE 7 Toll AR ek B = A) R, V51 NS P Ve . 3545 B i, 1 S AL R AT BRI &
Ik 7Mbbl ig . (010) 88254888,

R RS RIS zlts@phei.com.cn, FERRIZALEHR 1S Kb % dbgq@phei.com.cn,

AR4hek. (010) 88258888,

B

Tl

U —A T Ruby M AT HAR I N IMEFN, A SR, W LD
2545 /0 Ruby MR 588, MATTEIEA Ruby VM PIFERSEBUALE 2 mm 2] . AR,
“BX A Ruby BAE SRR 7 (R FE LR, SRIZHER, KR —AR
63 HF i BEE . T AHAD Ruby BESRA—FE, R RIE, VFHFRER, R
TR LSS, ARSI E I (84 Ruby ZeAEA B

TG IT G4 E i Ruby BIBIZEC 2T LAE T o XUE4EE, Ruby BARCA— IRBRIES
R T EE AR B, 4B Ruby B NASR—Y) . M —UIIES . BiA
T TARZ AR Ruby ., MYAHESE R ILPBRESWEFREERE, WA AR
TR R, 5k, b B — iES TG, Ruby BUENCAERBIES . (LRI,
Fe4%, Ruby EsHiRpefR 2 ScbrimE, WM T HOR—ITEHEARIIES, BRAEIFAHE
A S, (FRASHEH Ruby HE AN KEEAERS,)

KB T AEREABE BRI, EEEANE T LSRR, R 45 A
B AT4EYY . ERCHRE Y Ruby BEFATRRF o Ruby 972 #0827 b AR SCBRAEAE 5 4 b
PIE S, A 2 i & AR T AT I TR SEBR S, JFREE -] — S 51 .

AR BT KERB, I EROROURRE A A i
Wi BT “NHA” o BEIRIXEERR Ruby HIX S4E KRR TR M bR, HRRR
PREE . i R RRAR TR, IHSCRE b RO BGHAR AT A R Y B SEER.

FERRENABPREER 2, WEOABAFERE T ARILEUMARZE, REEMRK
H—% Ruby T2 5 .

Mitchell Hashimoto
HashiCorp #94] % A#= CEO, Vagrant #94F 3

%*

Bl

il

5] AR SRR PR W A B LT PIA BB, 85— BURAE YR 2 i SURNifE &5
sk, N DR S50, TR — W BB A, B Ruby A, EH9
VB RS LA o X 75 A R ARLL, R 04— 36 T i A —— X T
SRR BT o 5.

5l BT AR A MR, W BEERA S, 2T A
R K 7 1 AR P R AT SR R0 758, Ruby UL RRIRE, HEAN, Ruby 1)
block Al iterator BB (R AAAIR. 2T AT “Ruby B9)7 20" RARPEFIE, SN
RS GHR, JLiX—B BT

Bl AR R, (ERA TR R— AR, BRSO T
Ruby %I K% — B BE——CL 2% &2 T HE RIS, AH00 H bR R k%% T 5] Ruby 18
BEHORERE, LK 455 T T FLS) F AR RO REACIAR . [, AL 41 Ruby
BEUSRBAG TR, T ARSI B T4 A AR

Ruby B 3L 3R 0 fig 4

R, Ruby #E XA RERR A TR o M T7ES R A0 B B TAE, f248 Ruby
BRI S . 4 7B) Ruby fEBERE (BRI MRI) , A 54— LEfi e as il LU S
USR5 B0 Ruby o PR30 8 31 2 B0 B4 T RIBAT Java [FHARF O 4 7 IR 55 2 1, 31
L, X IFSE JRuby FFRDREG M), HARATORAE BLANfT? Ruby R FIER T GE A A2 AET-HL
FIF-H s A B [RIFERA AHAY Ruby SE3E

Ruby SCHLA ZRhE#E, XJE Ruby {GERIT FLEER AR . 28R, XSS ERA MR 1N
fE . (HJEMGE Ruby (RS HIFEFE B BERTE, X SLI[R] i i B 25 1047 0 Al MR 4T
B, AL ENZ R 2ESR

AR 5 1 K EB 43 N 2558 T T T A X M6 44 57 1) Ruby SEH, ME—75 25 7 A9 /2 Ruby PIFR4N
B, Fensi I TAERLE] . FE X ek, A BNFETEH Ruby FB——MRI, 34
PP IR FAMEE Ruby BRASBIIHEE, AREESEEIRATHETTERE T MRI AR FE

FFHERA, AT A RS ER S 4 Ruby 1.9.3 ME A, 5 AHiAf, Ruby 2.1
JERGHTAS, Ruby 2.2 IEFEFF R H . UNSRAAS A B A Rl 38 S A A, IR ARG AR AE
A SRR RRAS T #REE TAE.

xii Wi s
XUt 9T 4R

Ruby 2 5 R4y i fdi AR R 6 07 380 304k Ruby /U5, 24— Ruby-Gem 7] LA
R A ACRD, FEAS AN TR RE B AR BN B 45 e 3R o PR AR 30X — S = R AR S
AR FIT 22) IR K 2 1 e R 1) XU A S A (]

MR R SR, B RS SR S8, RS MOk 2z W
Bk, LAY, 2% 88 2 AR I RA HRTES, X JEHY Ruby HEA 8
FoR(E RS S (B2 IE AR 1 B, fE—Lu L T ZBE R 455 2 RS RO
ST EE SR Ruby R FEMARA BSE A . B s nl Bk alas SO, Fr AFRIA 0 Z 0% [45 5 1
SIWARAGE , A4t X I R R B A Al

R 55509 55— R DR BRI AE PRS2 7 VA TR (AN QR B RE b B 2z .
7 R AT BE 2y e FH AR TR AT R A R 2 DGR 7 (ELan require) o FH B2 45 = RE 68 45
BB FE R IR O o

BE SR X — I FE e KUK (0] B, AUt A B — U2, 7EAS P b 3 7 e at, & RI
notation ﬁu%{hﬂjK?&%ﬁRI notation, A L HAT T f#, S HIEWA M. HEaRKm/ER
XML B . M9 R kR, A BEHAPAES () ARk, i,
File::open F7i open /774K A T File 28, 25, LB EAIS (#) 5rBRs 2 FSL)
F4 (i Array#teach) o [alAE A XURS to 57 FH AR R O3k (B n GCaistat) AR H SE 1) 7
¥ (Feln Enumerable#tgrep) o 2 40 WL/ 44 T RI notation, LA S ARAT (i A B2 R A 42 7 i
R, TR T AN AR A Z a5 2 0] DI IR R EA T T .

SRR AT IR ED
ARBLFREHGIRNRGD, h T EED BRI, (U8 2P fs/he, &K

SARTH A — B, A SR RS EGT —SR E E A ARY . A T B A A A RS ke S B K
R3f, Kk, A AR ETGESE http://effectiveruby.com B8 3],

B

REAS S H A 52 0 3 A N 1)) 35 LD R B AR M SE) A AN 2 T — I AR 297, SEBs b,
BT A B MO ST A, AR 2 A RLXREARRE Y SO A R ER AR Hetn,
(KA 4 Michael Garriss A2 BF], 1EZME T 7 >] Ruby, AH T ARBER, HAEA
5 R AT A N 5 A), S Ruby RGN SRTH, i
B A T o

] A REAA L AR, (R TR A SR AR S L 25 a8 28 SRy T U At DX STkt a1 AN €15)
WA A, RE AT I s — TR, BRI & ot i TR, #ORITIE
Wi, WK TEAE Ruby MR FIA B ITHE R gem MTRTS, AT RESE AT, AL
e TARZ N BFSEACHD , (FANIT AT, MOSEss, iRt SRR, B, HIGIEMXATA I
AR R A

Wk ASREAT AR Y TR — R TR AL, XA BASXAAME, —L
MR T AT 25 bR B] ok 35 B R o7 A5 A B v, OF g T RARZ AR WA A9 R Bt
Isaac Poraker, Timothy Clayton, LK FKMFE T Shanna Jones, fE 1 A HATH] e 2 A 45 3 HLA
AR IE# . JE5 BRI TR AT B .

Bruce Williams F1 Bobby Wilson $HE T ABHIH A HER A, AIRE—TF AR5 A N2
WA 25N Sy AT B TR T A B AORE B RO R . YT TR TR TAE
it BB, b 1B 13k,

Pearson Hﬁﬂfﬁf{’ﬁ)\ﬁ%ﬁjﬂi%ﬂ%f?\%j% Trina MacDonald, Olivia Basegio 7 Songlin
Qiu #p45 T T FALE WO AR, BZOKA 18858 s 7 B MRRE . 7EX T H AR
M4, RA—HRo BN ZIE S T,

Scott Meyers FRAUEE, Mft—& TAERRIRLLORE ., 7E 20 HE4D 90 40K,
i T Scott B9 Effective C++, XAPHUE T RAHE X, BWRR A T AR AR 2L
HIELZA T o TR RS 4 Scote BRI FRAE W &8, (FUR Scott 245 TR IC MR AL B .
IR, Scott,

FA9FET, Shanna Jones, —HA TR ILANE R MR, WASERESSRREZRK
B AR], AR B E R B 5E X A4S, Shanna, S THRRZ ARG, WgR—HEL
P IEES

*F1EH

Peter J. Jones M\ 2005 fEEEFF 1A 8 F] Ruby. MAEMIR AL T —& Commodore 64 ZJA 5l
FFiE T AR 2, IRR R A2 E B A, TR A — AR 5 R AN R s o Peter
PE R — % A IR AR TR, df2 Devalot.com Zif#AHEH workshop ,‘ﬁ’}/%l#umo

R
[

gt

KTk

Chapter 1: Accustoming Yourself to Ruby

[tem
Item
Item
Item
Item

1:

2:
3:
4:
o;

Understand What Ruby Considers to Be True
Treat All Objects as If They Could Be nil
Avoid Ruby’s Cryptic Perlisms

Be Aware That Constants Are Mutable

Pay Attention to Run-Time Warnings

Chapter 2: Classes, Objects, and Modules

Item
Item
Item
Item
Item
Item
[tem
Item

Item
Item

6:
7.
8:
O:

10:
11:
12:
13:

14:
15:

Know How Ruby Builds Inheritance Hierarchies
Be Aware of the Different Behaviors of super
Invoke super When Initializing Subclasses

Be Alert for Ruby’s Most Vexing Parse

Prefer Struct to Hash for Structured Data
Create Namespaces by Nesting Code in Modules
Understand the Different Flavors of Equality

Implement Comparison via “<=>" and the
Comparable Module

Share Private State through Protected Methods
Prefer Class Instance Variables to Class Variables

© O W = =

12

17
17
24
28
31
35
38
43

49
53
55

vi Ha#

Chapter
Item 16:

Item 17:
Item 18:

Item 19:
Item 20:
Item 21:

3: Collections

Duplicate Collections Passed as Arguments
before Mutating Them

Use the Array Method to Convert nil and
Scalar Objects into Arrays

Consider Set for Efficient Element Inclusion
Checking

Know How to Fold Collections with reduce
Consider Using a Default Hash Value

Prefer Delegation to Inheriting from Collection
Classes

Chapter 4: Exceptions

Item 22:
Item 23:
Item 24:
Item 25:
Item 26:

Item 27:

Chapter
Item 28:
Item 29:
Item 30:
Item 31:
Item 32:
Item 33:
Item 34:
Item 35:

Chapter
Item 36:
Item 37:
Item 38:
Item 39:

Prefer Custom Exceptions to Raising Strings
Rescue the Most Specific Exception Possible
Manage Resources with Blocks and ensure
Exit ensure Clauses by Flowing Off the End

Bound retry Attempts, Vary Their Frequency,
and Keep an Audit Trail

Prefer throw to raise for Jumping Out of Scope

5: Metaprogramming
Familiarize Yourself with Module and Class Hooks
Invoke super from within Class Hooks
Prefer define_method to method_missing
Know the Difference between the Variants of eval
Consider Alternatives to Monkey Patching
Invoke Modified Methods with Alias Chaining
Consider Supporting Differences in Proc Arity
Think Carefully Before Using Module Prepending

6: Testing
Familiarize Yourself with MiniTest Unit Testing
Familiarize Yourself with MiniTest Spec Testing
Simulate Determinism with Mock Objects
Strive for Effectively Tested Code

59
59
63

66
70
74

79

85
85
90
94
97

100
104

107
107
114
115
122
127
133
136
141

145
145
149
152
156

H# vii

Chapter 7: Tools and Libraries 163
Item 40: Know How to Work with Ruby Documentation 163
Item 41: Be Aware of IRB’s Advanced Features 166
Item 42: Manage Gem Dependencies with Bundler 170
Item 43: Specify an Upper Bound for Gem Dependencies 175

Chapter 8: Memory Management and

Performance 179

Item 44: Familiarize Yourself with Ruby’s Garbage Collector 179
Item 45: Create Resource Safety Nets with Finalizers 185
Item 46: Be Aware of Ruby Profiling Tools 189
Item 47: Avoid Object Literals in Loops 195
Item 48: Consider Memoizing Expensive Computations 197
Epilogue 201

Index 203

Accustoming
Yourself to
Ruby

With each programming language you learn, it's important to dig in
and discover its idiosyncrasies. Ruby is no different. While it borrows
heavily from the languages that preceded it, Ruby certainly has its
own way of doing things. And sometimes those ways will surprise you.

We begin our journey through Ruby’'s many features by examining
its unique take on common programming ideas. That is, those that
impact every part of your program. With these items mastered, you'll
be prepared to tackle the chapters that follow.

Item 1: Understand What Ruby Considers to Be True

Every programming language seems to have its own way of dealing
with Boolean values. Some languages only have a single representa-
tion of true or false. Others have a confusing blend of types that are
sometimes true and sometimes false. Failure to understand which
values are true and which are false can lead to bugs in conditional
expressions. For example, how many languages do you know where
the number zero is false? What about those where zero is true?

Ruby has its own way of doing things., Boolean values included.
Thankfully, the rule for figuring out if a value is true or false is pretty
simple. It's different than other languages, which is the whole reason
this item exists, so make sure you understand what follows. In Ruby,
every value is true except false and nil.

It's worth taking a moment and thinking about what this means.
While it's a simple rule, it has some strange consequences when com-
pared with other mainstream languages. In a lot of programming lan-
guages the number zero is false, with all other numbers being true.
Using the rule just given for Ruby, zero is true. That's probably one
of the biggest gotchas for programmers coming to Ruby from other
languages.

2 Chapter 1 Accustoming Yourself to Ruby

Another trick that Ruby plays on you if youre coming from another
language is the assumption that true and false are keywords. They're
not. In fact, they're best described as global variables that don't follow
the naming and assignment rules. What I mean by this is that they
don't begin with a “$” character, like most global variables, and they
can't be used as the left-hand side of an assignment. But in all other
regards they're global variables. See for yourself:

irb> true.class
---> TrueClass

irb> false.class
---> FalseClass

As you can see, true and false act like global objects, and like any
object, you can call methods on them. (Ruby also defines TRUE and
FALSE constants that reference these true and false objects.) They also
come from two different classes: TrueClass and FalseClass. Neither of
these classes allows you to create new objects from them; true and
false are all we get. Knowing the rule Ruby uses for conditional
expressions, you can see that the true object only exists for conve-
nience. Since false and nil are the only false values, the true object
is superfluous for representing a true value. Any non-false, non-nil
object can do that for you.

Having two values to represent false and all others to represent true
can sometimes get in your way. One common example is when you
need to differentiate between false and nil. This comes up all the
time in objects that represent configuration information. In those
objects, a false value means that something should be disabled, while
a nil value means an option wasn't explicitly specified and the default
value should be used instead. The easiest way to tell them apart is by
using the ni1? method, which is described further in Item 2. Another
way'is by using the “==" operator with false used as the left operand:

if false == x

end

With some languages there's a stylistic rule that says you should
always use immutable constants as the left-hand side of an equal-
ity operator. That's not why I'm recommending false as the left oper-
and to the “==" operator. In this case, it's important for a functional
reason. Placing false on the left-hand side means that Ruby parses
the expression as a call to the FalseClass#== method (which comes
from the Object class). We can rest safely knowing this method only
returns true if the right operand is also the false object. On the other

Item 2: Treat All Objects as If They Could Be nil 3

hand, using false as the right operand may not work as expected
since other classes can override the Object#== method and loosen the
comparison:

irb> class Bad
def == (other)
true
end
end

irb> false == Bad.new

---> false

irb> Bad.new == false '
---> true

Of course, something like this would be pretty silly. But in my expe-
rience, that means it's more likely to happen. (By the way, we’ll cover
the “==" operator more in Item 12.)

Things to Remember
+ Every value is true except false and nil.
+ Unlike in a lot of languages, the number zero is true in Ruby.

+ If you need to differentiate between false and nil, either use the
ni1? method or use the “==" operator with false as the left operand.

Item 2: Treat All Objects as If They Could Be nil

Every object in a running Ruby program comes from a class that, in
one way or another, inherits from the BasicObject class. Imagining how
all these objects relate to one another should conjure up the familiar
tree diagram with BasicObject at the root. What this means in prac-
tice is that an object of one class can be substituted for an object of
another (thanks to polymorphism). That's why we can pass an object
that behaves like an array—but is not actually an array—to a method
that expects an Array object. Ruby programmers like to call this “duck
typing.” Instead of requiring that an object be an instance of a specific
class, duck typing shifts the focus to what the object can do; in other
words, interface over type. In Ruby terms, duck typing means you
should prefer using the respond_to? method over the is_a? method.

But in reality, it's rare to see a method inspect its arguments using
respond_to? to make sure it supports the correct interface. Instead,
we tend to just invoke methods on an object and if the object doesn't
respond to a particular method, we leave it up to Ruby to raise a

4 Chapter 1 Accustoming Yourself to Ruby

NoMethodError exception at run time. On the surface, it seems like
this could be a real problem for Ruby programmers. Well, just between
you and me, it is. It's one of the core reasons testing is so very import-
ant. There's nothing stopping you from accidentally passing a Time
object to a method expecting a Date object. These are the kinds of
mistakes we have to tease out with good tests. And thanks to testing,
these types of problems can be avoided. But one of these polymorphic
substitutions plagues even well-tested applications:

undefined method 'fubar' for nil:NilClass (NoMethodError)

This is what happens when you call a method on an object and it turns
out to be that pesky nil object...the one and only object from the Ni1Class
class. Errors like this tend to slip through testing only to show up in
production when a user does something out of the ordinary. Another
situation where this can occur is when a method returns nil and then
that return value gets passed directly into another method as an argu-
ment. There’s a surprisingly large number of ways nil can unexpect-
edly get introduced into your running program. The best defense is to
assume that any object might actually be the nil object. This includes
arguments passed to methods and return values from them.

One of the easiest ways to avoid invoking methods on the nil object
is by using the ni1? method. It returns true if the receiver is nil and
false otherwise. Of course, nil objects are always false in a Boolean
context, so the if and unless expressions work as expected. All of the
following lines are equivalent to one another:

person.save 1if person
person.save 1if !person.nil?
person.save unless person.nil?

It’s often easier to explicitly convert a variable into the expected type
rather than worry about nil all the time. This is especially true when
a method should produce a result even if some of its inputs are nil.
The Object class defines several conversion methods that can come
in handy in this case. For example, the to_s method converts the
receiver into a string;:

irb> 13.to_s
___> l|l3ll

irb> nil.to_s

As you can see, NilClass#to_s returns an empty string. What
makes to_s really nice is that String#to_s simply returns self
without performing any conversion or copying. If a variable is
already a string then using to_s will have minimal overhead. But

Item 2: Treat All Objects as If They Could Be nil 5

if ni1 somehow winds up where a string is expected, to_s can
save the day. As an example, suppose a method expects one of its
arguments to be a string. Using to_s, you can hedge against that
argument being nil:

def fix_title (title)
title.to_s.capitalize
end

The fun doesn’t stop there. As you'd expect, there's a matching con-
version method for almost all of the built-in classes. Here are some of
the more useful ones as they apply to nil:

irb> nil.to_a "

> []

irb> nil.to_i
-—-->0

irb> nil.to_f
---> 0.0

When multiple values are being considered at the same time,
you can make use of a neat trick from the Array class. The
Array#compact method returns a copy of the receiver with all nil
elements removed. It's common to use it for constructing a string
out of a set of variables that might be nil. For example, if a per-
son’s name is made up of first, middle, and last components—any
of which might be nil—you can construct a complete full name
with the following code:

name = [first, middle, last].compact.join(" ")

The nil object has a tendency to sneak into your running programs
when you least expect it. Whether it's from user input, an uncon-
strained database, or methods that return nil to signal failure,
always assume that every variable could be nil.

Things to Remember
+ Due to the way Ruby’s type system works, any object can be nil.

+ The nil1? method returns true if its receiver is nil and false
otherwise.

+ When appropriate, use conversion methods such as to_s and to_i
to coerce nil objects into the expected type.

+ The Array#compact method returns a copy of the receiver with all
nil elements removed.

6 Chapter 1 Accustoming Yourself to Ruby

Item 3: Avoid Ruby’s Cryptic Perlisms

If you've ever used the Perl programming language then you undoubt-
edly recognize its influence on Ruby. The majority of Ruby’s perlisms
have been adopted in such a way that they blend perfectly with the
rest of the ecosystem. But others either stick out like an unnecessary
semicolon or are so obscure that they leave you scratching your head
trying to figure out how a particular piece of code works.

Over the years, as Ruby matured, alternatives to some of the more
cryptic perlisms were added. As more time went on, some of these
holdovers from Perl were deprecated or even completely removed from
Ruby. Yet, a few still remain, and you're likely to come across them
in the wild. This item can be used as a guide to deciphering those
perlisms while acting as a warning to avoid introducing them into
your own code.

The corner of Ruby where you're most likely to encounter features bor-
rowed from Perl is a set of cryptic global variables. In fact, Ruby has
some pretty liberal naming rules when it comes to global variables.
Unlike with local variables, instance variables, or even constants,
youTe allowed to use all sorts of characters as variable names. Recall-
ing that global variables begin with a “$” character, consider this:

def extract_error (message)
if message =~ /AERROR:\s+(.+)$/
$1
else
"no error"
end
end

There are two perlisms packed into this code example. The first is the
use of the “=~" operator from the String class. It returns the position
within the string where the right operand (usually a regular expres-
sion) matches, or nil if no match can be found. When the regular
expression matches, several global variables will be set so you can
extract information from the string. In this example, I'm extracting
the contents of the first capture group using the $1 global variable.
And this is where things get a bit weird. That variable might look and
smell like a global variable, but it surely doesn’t act like one.

The variables created by the “=~" operator are called special global vari-
ables. That's because they're scoped locally to the current thread and
method. Essentially, they're local values with global names. Outside of
the extract_error method from the previous example, the $1 “global”
variable is nil, even after using the “=~" operator. In the example,

