BmadVleW PEARSON - FERIERPR

www.broa

Eftective Objective-C 2.0

G5 ET OS50S XIS 243 i 1k

[2] Matt Galloway 2 \/

wwwwwwwwwwwwwwwwwwwww

%Q%Jﬁﬁi (" e .

Effective Objective-C 28§

[2] Matt Galloway &

% F 3% &AL
Publishing House of Electronics Industry
Jb3X-BELJING

- RIRERBR -

&
.
possesl @
-
¥
®
!\)
<
(X8)

SRy

A4S RIEYE Objective-C E A HURRM AN, fAZEP & usHX1ES. 28y 78, A
7 AT EEFIR T T Objective-C GiBvh 52 /M2 AU Syl LI REME. 5 1 REMEE (R B VR
@mmw£m&bﬁﬁ;%2ﬁwﬁT5Eﬁﬁ%%§%E§ﬁﬁ(ﬁ%‘ﬁaﬂ@ﬁ%)ﬁ%%ﬁ
Sy 53BN T A% S E A5 Objective-C HEAIMISE, 45 4 BEUHR LS 5 AAHRAIETS s 5 &
SRNTEEEIEEET; B 6 S SAHRIR%E (Grand Central Dispatch) FHRAIETS s 557 &
W5 T Cocoa Fil Cocoa Touch ZAEHELE, FHREAWFE T HAHIFELEN,

Original edition, entitled Effective Objective-C 2.0: 52 Specific Ways to Improve Your iOS and OS X Programs,
0321917014, by Matt Galloway, published by Pearson Education, Inc., publishing as Addison-Wesley Profes-
sional, Copyright © 2013 Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

IR % 4 MU Pearson Education $5 A= SR AR TE A7 R 23 w152 T Lk AR
i, RBHARE BUCTE e, AEUME R R fsb ReA B ERTEL .

AR E AR S E &, IR BT B R E S) BT,
A A5 H S ENBUIL AT Pearson Education #4: # 8 AR BN (hbr% . ThREE A RHE.
MO 5 4 FRILS E5e: 01-2015-6094

BBHERRE (AP) BB

Effective Objective-C 2.0: 4a 5 i Jit & 108 5 OS X fRRYHY 52 A4 80 i =Effective Objective-C 2.0: 52
Specific Ways to Improve Your iOS and OS X Programs: Yo/ () Migd (Galloway,M.) 3. — Jbit:
B Lol ifiRdt, 2016.4

(FeRkE B R)

ISBN 978-7-121-27263-9

L @QE-IL @ 1L @ CiEE —BFkit - % v. © TP312

v [R A 50 CIP SRz (2015) 3227473 5

TR kEN
TG REE
BN Rl =il oS ENRIEET AR 2w
s T, =@iREEIRIEIT AR
AR & AT BTl ke
bRt h AR 17355 #B%. 100036
FF 7. 787x980 1/16 Efgk. 19 FH. 456 TF
M k. 2016 4E 4 A% 1R
Efl U, 2016 4F 4 A 1k ENRI
E fire 75.00 7T
Rﬁ%%%%lﬂ&ﬁﬁﬁﬁﬁﬁﬁﬁﬁ,%m%%#%%ﬁoﬁﬁmﬁﬁ,%Siﬁﬁﬁ%ﬁg,
2 S P ELiE . (010) 88254888,
R BRI R4 F Zts@phei.com.cn, EARIZFLEIRIE KL 2 dbgg@phei.com.cn,
MRk . (010) 88258888,

#k 5 Rosie

bl

1

i

Z W W E A NS Objective-C X[TIHFMICK . S, S, ERIVINEHHE. R
T MBS SRT, R TS IX SR, FATAOCEEIRIERNFIR, BB IR S R
BB S B2 AL . X IER—ABEVHRINA .

XTAH

ARBERECLABT Objective-C MR, FIUANEMEER, AREYHZER
EEREXITES MY, UGS REFHMAE, BT Objectve-C J&H Smalltalk, FrLIE
1M AEWES . FEHMES T, 152 TIER B SIFSRTM; MAE Objective-C 7,
WE R BT (runtime) P47, TR, FEAREEMEAEN KIS FRIERETT, BT
TAEREE -t nT RE R A H T AR T A BE IE B AT o R BRI BRAE T 58,
RE—IFREIERE S .

ek U8, A H PRI 215 S Objective-C HIZ OB I L KB, APERFIRG
BE R B9 F A, B4 libdispatch FERY “ K HAXIRK” (Grand Central Dispatch) %o N4
B BT 13564 Objective-C I & 5 & 48 FF & Mac OS X 8 i0S i 2 F, Fril, HhhBEEK
Foundation HEZRH I L2, AR HEEL NSObjecte N EFF & Mac OS X 27 ik 2
i0S 17, #RILEEL MBI RGMEL, i FrTHMSHESRGMN Cocoa, 54 B FHRIHESRI Y
YE Cocoa Touchs

i iOS K24, FETF R EHIA T Objective-C FF & WML, A HIRRT RVIEHREE,
A 1R Java B C++ JE0t, A BN TTIF & & 1 5. T 2EWF, AT R8s
Objective-C, REPULAERTEBFGRXI TIES, AR HEEA. EH T4 . B bug)
R

REARBHNERET 6 MABRMELG T, EEHERREFERAKAEE. JLFATHY
— K, F—mfMEE, LT iPod Touch; RIFHF|E—M SDK AFfiZ)a, RikERXETF K
— . A —A “RIFHFERF" W “Subnet Calc” , HTFHBEIHEPESL, ARAHE
HEGEH A CUUEEMX N EDIEFTE% T . NI —EBIHR Objective-C, HEMTE
F C IR www.galloway.me.uk & FHE . RIHZIES HWHAE TR, ik (block) |
A 35| %L (Auto Reference Count, ARC) ZRHERIEGHE, TR, EAVESE —ARit#
Objective-C H-fIF, T HARFINE THL=

x BiE

ARTFIA BB RBCR, B K BRBRI T, B8 S BB R a5 i TR A X
HITETTRAE o AT LA TF BT A 60T, AT LA A B 5 | TR 2% B B2 AW R, HARS .
BRI AF AT, i LA AT LAAR 4 BEAR A PROE $R 31 56 T 58 5 RriE iy 4L
150

FHEREE

AT AR LA R FERABST Objective-C BIFF & #, HIHGRE B T 44 # &k
HE /D bug B, WNRIR B RTEAZ Objective-C #2771, (HRESEH Java 3% C++ & HAlh
X REE S, 2RISR B, A RFESE T ##— T Objective-C AUTET .

FHEEAR

AFAITHEYF Objective-C i FH MR ATR, IRAT LITEVF 2 80 IS5 SOkl h 4R 3 ix s
WA, AREWMRITEBERXITES . BPRESNETHRE, BRER /NS
TR AT . XA B H RIS A B ZH S U IR & &

% 1% : #%& Objective-C (Accustoming Yourself to Objective-C)
MR FUHRZIE = % OB

F 2. AR & AE4TE (Objects, Messaging, and the Runtime)
B X RIE S W — D EEARER, MRZEEERKSE, AP T X LRE,
IFRA R RASAEZ TR 91T R

% 3%: # v 5 API %t (Interface and API Design)
REIRFME A FE A, BIERBAMEZ AT, WkARA AT ieHEA
CHZIIH . AFEHRAFIHEESS Objective-C FEHLHIZE

% 4F: 54 % (Protocols and Categories)
XS HREWN TR ERNEZE ST, AEHEY, WIS 5, 54
HA WA AR B FE RS E X &

% 5%: NAEH (Memory Management)

Objective-C 1 7 LA 5| FITTECRE B N AF——1F 2 W05 38 XU GEAR AL s an SR 2z Rl
FEE T ALIRIEERS (garbage collector) SREFRNAE, APAE LML, “Ashg HHEC
PLHI M 7L, AR AR S E R ERFI, DB RBEIER, ABUNTF
i . A ERER B RN E T BALHHR,

] xi

% 6%, 5K PHIKA (Blocksand Grand Central Dispatch)

HEAFBIAT “Be” (block) X—Hi4&, HiEEEMT CEFY RHMME(cosure) o
£ Objective-C #EF 1, T 3E R S — 2 2 R A BAR SRR IR A A RESE U 31
HOBBES IR/ 8 (code separation) o KHXIRA (Grand Central Dispatch, GCD) et
T — T 2RI F RO, BRATIR GCD MIEF, BURT REIRIL, XLt
ST RIT . A BB AL WA FE4riE A U O HR .

% 7%. Z%4E% (The System Frameworks)

5% 38 % 2 Fi] Objective-C K FF % Mac OS X 5 i0S F2JF. TEXPIFHEOL T #AH —& 5T
41 R GHELE AL, RTZ 4 N Cocoa, JE# 4 H Cocoa Touch, AFEHE X EHER,
HFEAFF I A RS

Bri

EW AR EBFRERES — &K LT Objective-C I FRF, FTTZIMETEK. 27
Effective R H)HAM BFEE, REIRBIEBE IFIXA Objective-C Y158 AT H2 k. A
MERAMIIZ T, XAFLTMRFKILHET .

A4 AR 22 RIEERTR HiF 2 € 11818 Objective-C FIRERAAH 3L, BT LA 1 S 2 BHE L
YE# Mike Ash, Matt Gallagher &2 “bbum” ¢ N, Z4Fk, XLif % #F B I B R MR % T
Objective-C 155 » TEZRIEA AT, NSHipster & Mattt Thompson 5 BT CEMLIE & T,
(R . IR ELEAHSE SR RIHR AL RAR A AT & SRS .

FEHEER T MX Telecom HAlE], F2EF| TIFZFIR, #AXBEN, Ao e st
F T, B Matthew Hodgson, 48 THHLE, ibIRLA—E AR C++ LI FE AR, FF
KT AR 108 MR, 75200 B e R AGUN RS SR EAT T 1 586,

ST R R R AL R KRBTSR Z, Bl S, XX REEAR
PR ULERE—FHARE BN

Bast R A A M g AN, 5ARMT09 & VEAE MM TR, Trina MacDonald, Olivia Basegio
Scott Meyers & Chtis Zahn #fE T B0 25 TR B S8 &AL AR T ZOE5HHTH,
F BB T R AR,

BEBIHEARGENT, SRMMEERIEFTREE, R4 TRERWIED ., 0w
BB ABNERE TR, EAAEAAE BRI AL AR S AFRYE,

BRRER, HWAREMAH, 3 Helen MIRMF 5 ZFFMAT D, WERBNZEIRR, AT
B8 — 4% T Rosie FEA T ! Helen 55 Rosie fEFRITF| S 52X A4S, R{T1FEEE!

X TEE

Matt Galloway /23 8301 —4% 10S & AR MTE 2007 FEEL FEINF R2F AT E 7T
e, G TR0, BRI mRER T EERY . BRRGE, h—ENFHE, %
{#i 1] Objective-C, M iOS K Ai%E—4~ SDK Fif, fth—E7E 08 LTI Ak, Ml Twiteer K
2 @mattigalloway, H H7E Stack Overflow (http://stackoverflow.com) | [a|Z& [l

Hx

His

]

SR

Chapter 1: Accustoming Yourself to Objective-C

Item
Item
Item

Item
Item

1:
2
3:

4:
b

Familiarize Yourself with Objective-C’s Roots
Minimize Importing Headers in Headers

Prefer Literal Syntax over the
Equivalent Methods

Prefer Typed Constants to Preprocessor #define

Use Enumerations for States, Options, and
Status Codes

Chapter 2: Objects, Messaging, and the Runtime

Item
Item

Item
Item

Item

Item
Item
Item

Item

6:
7:

8:
9:

10:
11:
12

I3:

14:

Understand Properties

Access Instance Variables Primarily Directly When
Accessing Them Internally

Understand Object Equality

Use the Class Cluster Pattern to Hide
Implementation Detail

Use Associated Objects to Attach Custom Data to
Existing Classes

Understand the Role of objc_msgSend
Understand Message Forwarding

Consider Method Swizzling to Debug
Opaque Methods

Understand What a Class Object Is

12

17

25
25

33
36

42

47
50
54

62
66

vi Ha

Chapter

Item 15:
Item 16:
Item 17:
[tem 18:
Item 19:
Item 20:
Item 21:

Item 22

Chapter

Item 23:

Item 24:

Item 25:

Item 26:
Item 27:

Item 28:

Chapter

Item 29:
Item 30:
Item 31:

Item 32:

Item 33:
Item 34:

Item 35:

Item 36:

3: Interface and API Design
Use Prefix Names to Avoid Namespace Clashes
Have a Designated Initializer
Implement the description Method
Prefer Immutable Objects
Use Clear and Consistent Naming
Prefix Private Method Names
Understand the Objective-C Error Model
: Understand the NSCopying Protocol

4: Protocols and Categories

Use Delegate and Data Source Protocols for
Interobject Communication

Use Categories to Break Class Implementations
into Manageable Segments

Always Prefix Category Names on
Third-Party Classes

Avoid Properties in Categories

Use the Class-Continuation Category to Hide
Implementation Detail

Use a Protocol to Provide Anonymous Objects

5: Memory Management
Understand Reference Counting
Use ARC to Make Reference Counting Easier

Release References and Clean Up
Observation State Only in dealloc

Beware of Memory Management with
Exception-Safe Code

Use Weak References to Avoid Retain Cycles

Use Autorelease Pool Blocks to Reduce
High-Memory Waterline

Use Zombies to Help Debug Memory-
Management Problems

Avoid Using retainCount

73
73
78
84
89
95

102

104

109

115
115
123

127
130

133
140

145
145
153

162

165
168

173

177
183

Ha

Chapter 6: Blocks and Grand Central Dispatch

Item 37:
Item 38:
Item 39:
Item 40:

Item 41:

Item 42:
Item 43:

Item 44:

Item 45:

Item 46:

Understand Blocks
Create typedefs for Common Block Types
Use Handler Blocks to Reduce Code Separation

Avoid Retain Cycles Introduced by Blocks
Referencing the Object Owning Them

Prefer Dispatch Queues to Locks
for Synchronization

Prefer GCD to performSelector and Friends

Know When to Use GCD and When to
Use Operation Queues

Use Dispatch Groups to Take Advantage of
Platform Scaling

Use dispatch_once for Thread-Safe
Single-Time Code Execution

Avoid dispatch_get_current_queue

Chapter 7: The System Frameworks

Item 47:
Item 48:
Item 49:

Item 50:
Item 51:

Item 52:

Index

Familiarize Yourself with the System Frameworks
Prefer Block Enumeration to for Loops

Use Toll-Free Bridging for Collections with
Custom Memory-Management Semantics

Use NSCache Instead of NSDictionary for Caches
Keep initialize and load Implementations Lean
Remember that NSTimer Retains Its Target

187
188
194
197

203

208
213

- 217

220

225
226

233
233
236

243
248
252
258

265

Accustoming
Yourself to
Objective-C

Objective-C brings object-oriented features to C through an entirely
new syntax. Often described as verbose, Objective-C syntax makes
use of a lot of square brackets and isn't shy about using extremely
long method names. The resulting source code is very readable but is
often difficult for C++ or Java developers to master.

Writing Objective-C can be learned quickly but has many intricacies
to be aware of and features that are often overlooked. Similarly, some
features are abused or not fully understood, yielding code that is diffi-
cult to maintain or to debug. This chapter covers fundamental topics;
subsequent chapters cover specific areas of the language and associ-
ated frameworks.

Item 1: Familiarize Yourself with Objective-C’s Roots

Objective-C is similar to other object-oriented languages, such as
C++ and Java, but also differs in many ways. If you have experience
in another object-oriented language, you'll understand many of the
paradigms and patterns used. However, the syntax may appear alien
because it uses a messaging structure rather than function calling.
Objective-C evolved from Smalltalk, the origin of messaging. The dif-
ference between messaging and function calling looks like this:

// Messaging (Objective-C)
Object *obj = [Object new];
[obj performWith:parameterl and:parameter2];

// Function calling (C++)
Object *obj = new Object;
obj->perform(parameterl, parameter2);

The key difference is that in the messaging structure, the runtime
decides which code gets executed. With function calling, the compiler

Chapter 1: Accustoming Yourself to Objective-C

decides which code will be executed. When polymorphism is intro-
duced to the function-calling example, a form of runtime lookup is
involved through what is known as a virtual table. But with messag-
ing, the lookup is always at runtime. In fact, the compiler doesn't even
care about the type of the object being messaged. That is looked up at
runtime as well, through a process known as dynamic binding, cov-
ered in more detail in Item 11.

The Objective-C runtime component, rather than the compiler, does
most of the heavy lifting. The runtime contains all the data struc-
tures and functions that are required for the object-oriented features
of Objective-C to work. For example, the runtime includes all the
memory-management methods. Essentially, the runtime is the set of
code that glues together all your code and comes in the form of a
dynamic library to which your code is linked. Thus, whenever the
runtime is updated, your application benefits from the performance
improvements. A language that does more work at compile time needs
to be recompiled to benefit from such performance improvements.

Objective-C is a superset of C, so all the features in the C language
are available when writing Objective-C. Therefore, to write effective
Objective-C, you need to understand the core concepts of both C and
Objective-C. In particular, understanding the memory model of C will
help you to understand the memory model of Objective-C and why ref-
erence counting works the way it does. This involves understanding
that a pointer is used to denote an object in Objective-C. When you
declare a variable that is to hold a reference to an object, the syntax
looks like this:

NSString *someString = @"The string";

This syntax, mostly lifted straight from C, declares a variable called
someString whose type is NSString*. This means that it is a pointer
to an NSString. All Objective-C objects must be declared in this way
because the memory for objects is always allocated in heap space and
never on the stack. It is illegal to declare a stack-allocated Objective-C
object:

NSString stackString;
// error: interface type cannot be statically allocated

The someString variable points to some memory, allocated in the heap,
containing an NSString object. This means that creating another vari-
able pointing to the same location does not create a copy but rather
yields two variables pointing to the same object:

NSString *someString = @"The string";
NSString *anotherString = someString;

Item 1: Familiarize Yourself with Objective-C’s Roots

Stack allocated Heap allocated

someString —— — |
By NSString

/ <data>

anotherString -

Figure 1.1 Memory layout showing a heap-allocated NSString
instance and two stack-allocated pointers to it

There is only one NSString instance here, but two variables are point-
ing to the same instance. These two variables are of type NSString*,
meaning that the current stack frame has allocated 2 bits of mem-
ory the size of a pointer (4 bytes for a 32-bit architecture, 8 bytes for
a 64-bit architecture). These bits of memory will contain the same
value: the memory address of the NSString instance.

Figure 1.1 illustrates this layout. The data stored for the NSString
instance includes the bytes needed to represent the actual string,.

The memory allocated in the heap has to be managed directly,
whereas the stack-allocated memory to hold the variables is automat-
ically cleaned up when the stack frame on which they are allocated is

popped.

Memory management of the heap memory is abstracted away by
Objective-C. You do not need to use malloc and free to allocate and
deallocate the memory for objects. The Objective-C runtime abstracts
this out of the way through a memory-management architecture
known as reference counting (see Item 29).

Sometimes in Objective-C, you will encounter variables that don't
have a * in the definition and might use stack space. These variables
are not holding Objective-C objects. An example is CGRect, from the
CoreGraphics framework:

CGRect frame;
frame.origin.x = 0.0f;
frame.origin.y = 10.0f;
frame.size.width = 100.0f;

Chapter 1: Accustoming Yourself to Objective-C

frame.size.height = 150.0f;
A CGRect is a C structure, defined like so:

struct CGRect {
CGPoint origin;
CGSize size;
}i
typedef struct CGRect CCRect;

These types of structures are used throughout the system frame-
works, where the overhead of using Objective-C objects could affect
performance. Creating objects incurs overhead that using structures
does not, such as allocating and deallocating heap memory. When
nonobject types (int, float, double, char, etc.) are the only data to be
held, a structure, such as CGRect, is usually used.

Before embarking on writing anything in Objective-C, I encourage
you to read texts about the C language and become familiar with the
syntax. If you dive straight into Objective-C, you may find certain
parts of the syntax confusing.

Things to Remember

+ Objective-C is a superset of C, adding object-oriented features.
Objective-C uses a messaging structure with dynamic binding,
meaning that the type of an object is discovered at runtime. The
runtime, rather than the compiler, works out what code to run for a
given message.

+ Understanding the core concepts of C will help you write effective
Objective-C. In particular, you need to understand the memory
model and pointers.

Item 2: Minimize Importing Headers in Headers

Objective-C, just like C and C++, makes use of header files and imple-
mentation files. When a class is written in Objective-C, the standard
approach is to create one of each of these files named after the class,
suffixed with .h for the header file and .m for the implementation file.
When you create a class, it might end up looking like this:

// EOCPerson.h
#import <Foundation/Foundation.h>

@interface EOCPerson : NSObject
@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *TastName;

Item 2: Minimize Importing Headers in Headers

@end

// EOCPerson.m
#import "EOCPerson.h"

@implementation EOCPerson
// Implementation of methods
@end

The importing of Foundation.h is required pretty much for all classes
you will ever make in Objective-C. Either that, or you will import the
base header file for the framework in which the class’s superclass
lives. For example, if you were creating an iOS application, you would
subclass UIViewController often. These classes’ header files will
import UIKit.h.

As it stands, this class is fine. It imports the entirety of Foundation,
but that doesn’t matter. Given that this class inherits from a class
that's part of Foundation, it's likely that a large proportion of it will
be used by consumers of EOCPerson. The same goes for a class that
inherits from UIViewController. Its consumers will make use of most
of UIKit.

As time goes on, you may create a new class called EOCEmployer. Then
you decide that an EOCPerson instance should have one of those. So
you go ahead and add a property for it:

// EOCPerson.h
#import <Foundation/Foundation.h>

@interface EOCPerson : NSObject

@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;
@property (nonatomic, strong) EOCEmployer *employer;
@end

A problem with this, though, is that the EOCEmployer class is not vis-
ible when compiling anything that imports EOCPerson.h. It would
be wrong to mandate that anyone importing EOCPerson.h must also
import EOCEmployer.h. So the common thing to do is to add the follow-
ing at the top of EOCPerson.h:

#import "EOCEmployer.h"

This would work, but it's bad practice. To compile anything that
uses EOCPerson, you don't need to know the full details about
what an EOCEmployer is. All you need to know is that a class called
EOCEmployer exists. Fortunately, there is a way to tell the compiler this:

5

