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Accustoming
Yourself to
Objective-C

Objective-C brings object-oriented features to C through an entirely
new syntax. Often described as verbose, Objective-C syntax makes
use of a lot of square brackets and isn't shy about using extremely
long method names. The resulting source code is very readable but is
often difficult for C++ or Java developers to master.

Writing Objective-C can be learned quickly but has many intricacies
to be aware of and features that are often overlooked. Similarly, some
features are abused or not fully understood, yielding code that is diffi-
cult to maintain or to debug. This chapter covers fundamental topics;
subsequent chapters cover specific areas of the language and associ-
ated frameworks.

Item 1: Familiarize Yourself with Objective-C’s Roots

Objective-C is similar to other object-oriented languages, such as
C++ and Java, but also differs in many ways. If you have experience
in another object-oriented language, you'll understand many of the
paradigms and patterns used. However, the syntax may appear alien
because it uses a messaging structure rather than function calling.
Objective-C evolved from Smalltalk, the origin of messaging. The dif-
ference between messaging and function calling looks like this:

// Messaging (Objective-C)
Object *obj = [Object new];
[obj performWith:parameterl and:parameter2];

// Function calling (C++)
Object *obj = new Object;
obj->perform(parameterl, parameter2);

The key difference is that in the messaging structure, the runtime
decides which code gets executed. With function calling, the compiler
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decides which code will be executed. When polymorphism is intro-
duced to the function-calling example, a form of runtime lookup is
involved through what is known as a virtual table. But with messag-
ing, the lookup is always at runtime. In fact, the compiler doesn't even
care about the type of the object being messaged. That is looked up at
runtime as well, through a process known as dynamic binding, cov-
ered in more detail in Item 11.

The Objective-C runtime component, rather than the compiler, does
most of the heavy lifting. The runtime contains all the data struc-
tures and functions that are required for the object-oriented features
of Objective-C to work. For example, the runtime includes all the
memory-management methods. Essentially, the runtime is the set of
code that glues together all your code and comes in the form of a
dynamic library to which your code is linked. Thus, whenever the
runtime is updated, your application benefits from the performance
improvements. A language that does more work at compile time needs
to be recompiled to benefit from such performance improvements.

Objective-C is a superset of C, so all the features in the C language
are available when writing Objective-C. Therefore, to write effective
Objective-C, you need to understand the core concepts of both C and
Objective-C. In particular, understanding the memory model of C will
help you to understand the memory model of Objective-C and why ref-
erence counting works the way it does. This involves understanding
that a pointer is used to denote an object in Objective-C. When you
declare a variable that is to hold a reference to an object, the syntax
looks like this:

NSString *someString = @"The string";

This syntax, mostly lifted straight from C, declares a variable called
someString whose type is NSString*. This means that it is a pointer
to an NSString. All Objective-C objects must be declared in this way
because the memory for objects is always allocated in heap space and
never on the stack. It is illegal to declare a stack-allocated Objective-C
object:

NSString stackString;
// error: interface type cannot be statically allocated

The someString variable points to some memory, allocated in the heap,
containing an NSString object. This means that creating another vari-
able pointing to the same location does not create a copy but rather
yields two variables pointing to the same object:

NSString *someString = @"The string";
NSString *anotherString = someString;
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Stack allocated Heap allocated

someString —— — |
By NSString

/ <data>

anotherString -

Figure 1.1 Memory layout showing a heap-allocated NSString
instance and two stack-allocated pointers to it

There is only one NSString instance here, but two variables are point-
ing to the same instance. These two variables are of type NSString*,
meaning that the current stack frame has allocated 2 bits of mem-
ory the size of a pointer (4 bytes for a 32-bit architecture, 8 bytes for
a 64-bit architecture). These bits of memory will contain the same
value: the memory address of the NSString instance.

Figure 1.1 illustrates this layout. The data stored for the NSString
instance includes the bytes needed to represent the actual string,.

The memory allocated in the heap has to be managed directly,
whereas the stack-allocated memory to hold the variables is automat-
ically cleaned up when the stack frame on which they are allocated is

popped.

Memory management of the heap memory is abstracted away by
Objective-C. You do not need to use malloc and free to allocate and
deallocate the memory for objects. The Objective-C runtime abstracts
this out of the way through a memory-management architecture
known as reference counting (see Item 29).

Sometimes in Objective-C, you will encounter variables that don't
have a * in the definition and might use stack space. These variables
are not holding Objective-C objects. An example is CGRect, from the
CoreGraphics framework:

CGRect frame;
frame.origin.x = 0.0f;
frame.origin.y = 10.0f;
frame.size.width = 100.0f;
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frame.size.height = 150.0f;
A CGRect is a C structure, defined like so:

struct CGRect {
CGPoint origin;
CGSize size;
}i
typedef struct CGRect CCRect;

These types of structures are used throughout the system frame-
works, where the overhead of using Objective-C objects could affect
performance. Creating objects incurs overhead that using structures
does not, such as allocating and deallocating heap memory. When
nonobject types (int, float, double, char, etc.) are the only data to be
held, a structure, such as CGRect, is usually used.

Before embarking on writing anything in Objective-C, I encourage
you to read texts about the C language and become familiar with the
syntax. If you dive straight into Objective-C, you may find certain
parts of the syntax confusing.

Things to Remember

+ Objective-C is a superset of C, adding object-oriented features.
Objective-C uses a messaging structure with dynamic binding,
meaning that the type of an object is discovered at runtime. The
runtime, rather than the compiler, works out what code to run for a
given message.

+ Understanding the core concepts of C will help you write effective
Objective-C. In particular, you need to understand the memory
model and pointers.

Item 2: Minimize Importing Headers in Headers

Objective-C, just like C and C++, makes use of header files and imple-
mentation files. When a class is written in Objective-C, the standard
approach is to create one of each of these files named after the class,
suffixed with .h for the header file and .m for the implementation file.
When you create a class, it might end up looking like this:

// EOCPerson.h
#import <Foundation/Foundation.h>

@interface EOCPerson : NSObject
@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *TastName;
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@end

// EOCPerson.m
#import "EOCPerson.h"

@implementation EOCPerson
// Implementation of methods
@end

The importing of Foundation.h is required pretty much for all classes
you will ever make in Objective-C. Either that, or you will import the
base header file for the framework in which the class’s superclass
lives. For example, if you were creating an iOS application, you would
subclass UIViewController often. These classes’ header files will
import UIKit.h.

As it stands, this class is fine. It imports the entirety of Foundation,
but that doesn’t matter. Given that this class inherits from a class
that's part of Foundation, it's likely that a large proportion of it will
be used by consumers of EOCPerson. The same goes for a class that
inherits from UIViewController. Its consumers will make use of most
of UIKit.

As time goes on, you may create a new class called EOCEmployer. Then
you decide that an EOCPerson instance should have one of those. So
you go ahead and add a property for it:

// EOCPerson.h
#import <Foundation/Foundation.h>

@interface EOCPerson : NSObject

@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;
@property (nonatomic, strong) EOCEmployer *employer;
@end

A problem with this, though, is that the EOCEmployer class is not vis-
ible when compiling anything that imports EOCPerson.h. It would
be wrong to mandate that anyone importing EOCPerson.h must also
import EOCEmployer.h. So the common thing to do is to add the follow-
ing at the top of EOCPerson.h:

#import "EOCEmployer.h"

This would work, but it's bad practice. To compile anything that
uses EOCPerson, you don't need to know the full details about
what an EOCEmployer is. All you need to know is that a class called
EOCEmployer exists. Fortunately, there is a way to tell the compiler this:
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