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ADAPTER’S FOREWORD

Purpose

The original of this book is an excellent work of Dr. Pressman and Dr. Maxim. The
8th edition emphasizes on the new software engineering process and techniques, and is °
definitive on basically all the subjects that are listed by the Software Engineering Body
of Knowledge (SWEBOK, http://www.swebok.org/). The extensive examples, references
and online exercises are also quite helpful to the students. There are numbers of
universities and colleges in China that are taking this book as their textbooks and keep
tracking through its different versions.

As the idea of bilingual teaching is promoted in the higher education institutes in China,
more and more schools are getting interested in this book. However, over nine hundred
pages of the original book make it too difficult for a Chinese student with an average English
reading ability to comprehend the fundamentals of software engineering in a semester. In
order to introduce this book to more Chinese college students, a compression of the original
book is made to better fit the book into the syllabus of an undergraduate course with only

the core contents, and to reduce the students’ reading load.

What’s Compressed

We noticed that MobileApps and security engineering are the two very important new
concepts added into this version. However due to the limited class time we finally decide
to keep only the security engineering and leave mobile applications to the graduate courses.
Similar to what we have done to the 7th edition, basically we would concentrate on the
fundamental concepts of common frameworks, and leave WebApps, MobileApps, metrics
and measurements, and some advanced topics to the graduate level courses.

The chapters that we would take to the graduate level and hence would be excluded
in the compressed version are: Chapter 16 (Pattern-based Design), Chapter 17 (WebApp
Design), Chapter 18 (MobileApp Design), Chapter 20 (Review Techniques), Chapter
25 (Testing Web Applications), Chapter 26 (Testing MobileApps), Chapter 28 (Formal
Modeling and Verification), Chapter 36 (Maintenance and Reengineering), and Part
Five (Advanced Topics). Chapter 30 (Product Metrics) is considered advanced as well,
except that the first Section 30.1 (A Framework for Product Metrics) is suitable for the
undergraduates to learn. Thus we plan to move Section 30.1 to Chapter 21 (Software
Quality Assurance) and add it to be Section 21.10.

Other compressions are made to keep everything consistent with the compressed 7th
edition:

1. All the sections and sub-sections related to WebApp and MobileApps will be removed.

They are: Section 11.5 (Requirements Modeling for Web and Mobile Apps), Section
14.5 (Component-level Design for Mobile Apps), Section 15.5 (WebApp and Mobile
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Interface Design), Sections 22.5-22.6 (Test Strategies for WebApps, and Test Strategies
for MobileApps), Section 29.4 (Configuration Management for Web and MobileApps),
Section 32.2.6 (WebApp Project Metrics), and Section 34.5.4 (Scheduling for ‘WebApp
and Mobile Projects).

2. In Chapter 3, Section 3.5 (Process Assessment and Improvement) and Section 4.4-
4.5 (Personal and Team Process Models, Process Technology) are considered as the
advanced topics and hence will not appear in the compressed version.

3. The content of Chapter 7 (Principles that Guide Practice) will eventually be
introduced in the following chapters. We would remove this chapter to save the
students some reading time.

4. In Chapter 8, Sections 8.2.5-8.2.6 (Nonfunctional Requirements, and Traceability),
and Sections 8.6-8.8 (Negotiating Requirements, Requirements Monitoring, and
Validating Requirements) are considered as the advanced topics and hence will not
appear in the compressed version.

5. In Chapter 23, Sections (and sub-sections) 23.4.4 (Graph Matrices), 23.6.1 (Graph-
Based Testing Methods), 23.6.4 (Orthogonal Array Testing), 23.8-23.10 (Testing
Documentation and Help Facilities, Testing for Real-time Systems, and Patterns for
Software Testing) are considered as the advanced topics and hence will not appear
in the compressed version.

6. We believe that it would be enough to simply introduce some basic concepts on
metrics and estimation to the undergraduates. Hence we plan to remove Sections
32.4-32.6 (Metrics for Process and Projects — Integrating Metrics within the
Process, Metrics for Small Organizations, and Establishing a Software Metrics
Program), and Sections 33.9-33.10 (Specialized Estimation Techniques and the
Make/Buy Decision).

Acknowledgments

We feel grateful to Roger S. Pressman and Bruce R. Maxim, the authors of the original
book, and McGraw Hill, the original publisher, for allowing us to compress the original 941-
page book into about six hundred pages. It is their ﬁnderstanding and generosity that make
it possible for more Chinese students to enjoy this distinguished book. Since the compression
is made by simply removing some chapters or sections, we hope to keep as far as possible the
elegancy of Dr. Pressman and Dr. Maxim’s writing style.

Thanks to everyone at China Machine Press who have put in great effort to make this
kind of cooperation possible.

The compression is made according to my own experience in teaching and practicing in
software engineering. It is certainly wild open for discussions and suggestions on further

improvements. Your comments are important to us, and would be very much appreciated.

Yue Chen
Zhejiang University
( chenyue@cs.zju.edu.cn )



PREFACE

?’hen computer software succeeds—when it meets the needs of the people who

use it, when it performs flawlessly over a long period of time, when it is easy
to modify and even easier to use—it can and does change things for the better. But
when software fails—when its users are dissatisfied, when it is error prone, when it
is difficult to change and even harder to use—bad things can and do happen. We all
want to build software that makes things better, avoiding the bad things that lurk in
the shadow of failed efforts. To succeed, we need discipline when software is designed
and built. We need an engineering approach.

It has been almost three and a half decades since the first edition of this book
was written. During that time, software engineering has evolved from an obscure idea
practiced by a relatively small number of zealots to a legitimate engineering disci-
pline. Today, it is recognized as a subject worthy of serious research, conscientious
study, and tumultuous debate. Throughout the industry, software engineer has re-
placed programmer as the job title of preference. Software process models, software
engineering methods, and software tools have been adopted successfully across a
broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disci-
plined approach to software, they continue to debate the manner in which discipline
is to be applied. Many individuals and companies still develop software haphazardly,
even as they build systems to service today’s most advanced technologies. Many pro-
fessionals and students are unaware of modern methods. And as a result, the quality
of the software that we produce suffers, and bad things happen. In addition, debate
and controversy about the true nature of the software engineering approach continue.
The status of software engineering is a study in contrasts. Attitudes have changed,
progress has been made, but much remains to be done before the discipline reaches
full maturity.

The eighth edition of Software Engineering: A Practitioner’s Approach is intended
to serve as a guide to a maturing engineering discipline. The eighth edition, like the
seven editions that preceded it, is intended for both students and practitioners, re-
taining its appeal as a guide to the industry professional and a comprehensive intro-
duction to the student at the upper-level undergraduate or first-year graduate level.

The eighth edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and im-
portant software engineering processes and practices. In addition, we have further
enhanced the popular “support system” for the book, providing a comprehensive set
of student, instructor, and professional resources to complement the content of the
book. These resources are presented as part of a website (www.mhhe.com/pressman)
specifically designed for Software Engineering: A Practitioner’s Approach.

The Eighth Edition. The 26 chapters of the eighth edition are organized into four
parts. This organization better compartmentalizes topics and assists instructors who
may not have the time to complete the entire book in one term.
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Part 1, The Process, presents a variety of different views of software process, consid-
ering all important process models and addressing the debate between prescriptive
and agile process philosophies. Part 2, Modeling, presents analysis and design meth-
ods with an emphasis on object-oriented techniques and UML modeling. Part 3,
Quality Management, presents the concepts, procedures, and methods that enable
a software team to assess software quality, conduct SQA procedures, and apply an
effective testing strategy and tactics. Part 4, Managing Software Projects, presents
topics that are relevant to those who plan, manage, and control a software develo-
pment project. Continuing in the tradition of past editions, a series of sidebars is used
throughout the book to present the trials and tribulations of a (fictional) software team
and to provide supple-mentary materials about methods and tools that are relevant
to chapter topics.

Acknowledgments. Special thanks go to Tim Lethbridge of the University of Ottawa
who assisted us in the development of UML and OCL examples, and developed the
case study that accompanies this book, and Dale Skrien of Colby College, who devel-
oped the UML tutorial in Appendix 1. Their assistance and comments were invaluable.
In addition, we'd like to thank Austin Krauss, Senior Software Engineer at Treyarch,
for providing insight into software development in the video game industry. We also
wish to thank the reviewers of the eighth edition: Manuel E. Bermudez, University of
Florida; Scott DeLoach, Kansas State University; Alex Liu, Michigan State University;
and Dean Mathias, Utah State University. Their in-depth comments and thoughtful
criticism have helped us make this a much better book.

Special Thanks. BRM: I am grateful to have had the opportunity to work with Roger
on the eighth edition of this book. During the time I have been working on this book
my son Benjamin shipped his first MobileApp and my daughter Katherine launched
her interior design career. I am quite pleased to see the adults they have become.
I am very grateful to my wife, Norma, for the enthusiastic support she has given me as
I filled my free time with working on this book.

RSP: As the editions of this book have evolved, my sons, Mathew and Michael, have
grown from boys to men. Their maturity, character, and success in the real world
have been an inspiration to me. Nothing has filled me with more pride. They now have
children of their own, Maya and Lily, who start still another generation. Both girls are
already wizards on mobile computing devices. Finally, to my wife Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still
another edition of “the book.”

Roger S. Pressman
Bruce R. Maxim
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