Mc

IIIIIIH‘

Graw
“lfﬂll“ IE.!iit!cI:ation
ELERENHARTE
(2] TS LEXRME HEHR. E&Eﬁ#ﬂ =
Roger S. Pressman Bruce R. Maxim
%
4
% Software Engineering
§8€ A PRACTITIONER'S APPROACH
hit
Roger S.
PRESSMAN
Bruce R.
Mo T b AR 3t MAXIM

China Machine Press

A LEES /f//;y

A Practitioner's Approach (Eighth Edition - English Abridgement)

0 Fiy

4

A PRACTITIONER'S APPROACH

Roger 5,

PRESSMAN

Bruce R.
MAXIM

[%] TS ERTE HBN R IRAEE

Roger S. Pressman Bruce R. Maxim

BT A AR A

China Machine Press

BHER®EB (CIP) ¥iE

BT AR SERRE R ST /5 EE (ESCHESRIR - 55 8 kR) /(32) 3 E (Pressman, R. S.),
() OEFER (Maxim, B. R.) & . —Jt5: VT HRAE, 2015.11

(ZHFERRREE)

FHLZEX: Software Engineering: A Practitioner’s Approach, Eighth Edition

ISBN 978-7-111-49931-2

LR IL Q- @D IL KETE-FEX V. TP3LIL5
chEMRAE 18 CIP ##EZS (2015) £ 073981 &
FHENEZS: BF: 01-2014-7783

Roger S. Pressman, Bruce R. Maxim : Software Engineering: A Practitioner’s Approach,
Eighth Edition (ISBN 978-0-07-802212-8).

Copyright © 2015 by McGraw-Hill Education.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including without limitation photocopying,
recording, taping, or any database, information or retrieval system, without the prior written
permission of the publisher.

This authorized English Abridgement is jointly published by McGraw—Hill Education and
China Machine Press. This edition is authorized for sale in the People’s Republic of China only,
excluding Hong Kong, Macao SAR and Taiwan.

Copyright © 2016 by McGraw-Hill Education and China Machine Press.

AAAN IS B ENIHUE AR FE AR S5 — /R (TEM) 30E HARA SRR Tl tH kit &R R, 1tk
AAPRTEPEANBRARNEEN (REEEE. B IRIIFBERESE) HE. R2F0zH0O, hiE
REEDE, BZEREIH.

FRAHEE T EBETT, AMBLMEMSRE R SRS IEMRSS .

APEERE McGraw-Hill ATIREIRE, TREEREHE.

AR, BRI,

HEREFT: P T AR CesmEmRE AL 22 8 IFEENIG: 100037)

FHiEwE: BIRE TIfERAf: B ML

B Rl JeEEEHELEIRIERAE fR ¥R: 2016 4 1 A5 1 ks 1 UREIRI
et ZA%: 186mmx 240mm 1/16 e gk: 37.5

4 £: ISBN 978-7-111-49931-2 E #r: 79.00 7

RMAS, wHER, BT, BT, dARLTHRAR
M #4%: (010) 88378991 88361066 #AG#&: (010) 88379604
4 # 4. (010) 68326294 88379649 68995259 ##4EM: hzjsj@hzbook.com

AR - BB R
R AR A B IR
ABEAEF: TRRAETFESN Bk SR

tHhRE 8918

IEENMUIK, BHEFK IR RE 5T B 22 AR TG, 74 J5 I RAE B AR & AT
BRI T Z2ME R RS HIER X RE RS, REEEREARR RN ZAERLFEY .
AR ZERGAL L R RER AL RS HE R S B, R 2 R
S| [B AL RHIFRIEC AR LR, by T 7= A) 22 R 2 2 e AR T HF TR, BWRT
FARMUAE, PEUMEERINE, NAHSEEME, RMEFRLEEH QR TTRE,

A, RGBS T, REOHEIZ % ERE, Xtk AA B 7R H 3536
Ylo XATHEHEE AR EPLE, WRk 1M 4 Ml 06 A 5L 70 07 s | A2 R
BE, ARERFBHEAL RN EBEGHRT, % B 0k E RAEH BB & R i L 4R R R
VMR R Z MBM A SEE %2 4, Hi, G HE—H EIME T LB R E L
HEF UM EREH B AHESIER, 1R SR, BREIE R — R RE R 2, :

BLAR T Y RAL AR B A A B RS R E MR E RS . H19984EFF 14, AR T
HABE T #k . BIREIMEFE B L. 2 BENRESE S, Ri]15Pearson, McGraw-Hill,
Elsevier, MIT, John Wiley & Sons, Cengage® it 73 & /A Fl &L T RIFIISIE LR, MbA]
A H9%CE P BOb P Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W. Kernighan, Dennis
Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz,
William Stallings, Donald E. Knuth, John L. Hennessy, Larry L. Petersons A Uifi & 5 fi—Ht 2 sk
an, BhOCHRMIBLEAE" BERIMAR, fhgEed . MRk, REA SRR EE, tiEAS
TRXENAT S RS A

THEHLBEAS" R TAES B T E RS 15 M EANEERAERE T h
HIEERE T, B ANEEST W HE AT T B A B A A9 TAE 5 T D45 B P 38t R 224 56 7 LR 5 7 b 1
&, ARBLTTARBOPBERERT. €4, “HEIR2EAE" B T E A, X
BREEZEPRLT RO DM, HETEBERANERBEMTSE B, HE R 2R R
PR M it ok ot A S 25 S RO 0 P 2 e T SR

BEETER | ZMAHEM . —FERE . TR AR . R A0 0 e XLHRFHERMNOEBE
T B ORI BEA THAURLE S EOR €l R B 10 R W7 58 38 IS0 B3 O TR, 38 et
EISMTSEHLBOR BT SR AL AR A — RO B B, ROTE Hhf R R B %, T 5245 #9268 L I 2
HNEX — L% R EERE . HETE)N BRI AN 3 25 X AR AT TV 4Rt BN sk A TS I
RATBRR ST

H£ZFEMYL: www.hzbook.com
B F B4 : hzjsj@hzbook.com =
BRAEIE: (010) 88379604
BRFMiE: bFFRRRGHEdb 1 & o A

: 10 R NN
BB 4B : 100037 F R A AR

ADAPTER’S FOREWORD

Purpose

The original of this book is an excellent work of Dr. Pressman and Dr. Maxim. The
8th edition emphasizes on the new software engineering process and techniques, and is °
definitive on basically all the subjects that are listed by the Software Engineering Body
of Knowledge (SWEBOK, http://www.swebok.org/). The extensive examples, references
and online exercises are also quite helpful to the students. There are numbers of
universities and colleges in China that are taking this book as their textbooks and keep
tracking through its different versions.

As the idea of bilingual teaching is promoted in the higher education institutes in China,
more and more schools are getting interested in this book. However, over nine hundred
pages of the original book make it too difficult for a Chinese student with an average English
reading ability to comprehend the fundamentals of software engineering in a semester. In
order to introduce this book to more Chinese college students, a compression of the original
book is made to better fit the book into the syllabus of an undergraduate course with only

the core contents, and to reduce the students’ reading load.

What’s Compressed

We noticed that MobileApps and security engineering are the two very important new
concepts added into this version. However due to the limited class time we finally decide
to keep only the security engineering and leave mobile applications to the graduate courses.
Similar to what we have done to the 7th edition, basically we would concentrate on the
fundamental concepts of common frameworks, and leave WebApps, MobileApps, metrics
and measurements, and some advanced topics to the graduate level courses.

The chapters that we would take to the graduate level and hence would be excluded
in the compressed version are: Chapter 16 (Pattern-based Design), Chapter 17 (WebApp
Design), Chapter 18 (MobileApp Design), Chapter 20 (Review Techniques), Chapter
25 (Testing Web Applications), Chapter 26 (Testing MobileApps), Chapter 28 (Formal
Modeling and Verification), Chapter 36 (Maintenance and Reengineering), and Part
Five (Advanced Topics). Chapter 30 (Product Metrics) is considered advanced as well,
except that the first Section 30.1 (A Framework for Product Metrics) is suitable for the
undergraduates to learn. Thus we plan to move Section 30.1 to Chapter 21 (Software
Quality Assurance) and add it to be Section 21.10.

Other compressions are made to keep everything consistent with the compressed 7th
edition:

1. All the sections and sub-sections related to WebApp and MobileApps will be removed.

They are: Section 11.5 (Requirements Modeling for Web and Mobile Apps), Section
14.5 (Component-level Design for Mobile Apps), Section 15.5 (WebApp and Mobile

ADAPTER’S FOREWORD

Interface Design), Sections 22.5-22.6 (Test Strategies for WebApps, and Test Strategies
for MobileApps), Section 29.4 (Configuration Management for Web and MobileApps),
Section 32.2.6 (WebApp Project Metrics), and Section 34.5.4 (Scheduling for ‘WebApp
and Mobile Projects).

2. In Chapter 3, Section 3.5 (Process Assessment and Improvement) and Section 4.4-
4.5 (Personal and Team Process Models, Process Technology) are considered as the
advanced topics and hence will not appear in the compressed version.

3. The content of Chapter 7 (Principles that Guide Practice) will eventually be
introduced in the following chapters. We would remove this chapter to save the
students some reading time.

4. In Chapter 8, Sections 8.2.5-8.2.6 (Nonfunctional Requirements, and Traceability),
and Sections 8.6-8.8 (Negotiating Requirements, Requirements Monitoring, and
Validating Requirements) are considered as the advanced topics and hence will not
appear in the compressed version.

5. In Chapter 23, Sections (and sub-sections) 23.4.4 (Graph Matrices), 23.6.1 (Graph-
Based Testing Methods), 23.6.4 (Orthogonal Array Testing), 23.8-23.10 (Testing
Documentation and Help Facilities, Testing for Real-time Systems, and Patterns for
Software Testing) are considered as the advanced topics and hence will not appear
in the compressed version.

6. We believe that it would be enough to simply introduce some basic concepts on
metrics and estimation to the undergraduates. Hence we plan to remove Sections
32.4-32.6 (Metrics for Process and Projects — Integrating Metrics within the
Process, Metrics for Small Organizations, and Establishing a Software Metrics
Program), and Sections 33.9-33.10 (Specialized Estimation Techniques and the
Make/Buy Decision).

Acknowledgments

We feel grateful to Roger S. Pressman and Bruce R. Maxim, the authors of the original
book, and McGraw Hill, the original publisher, for allowing us to compress the original 941-
page book into about six hundred pages. It is their ﬁnderstanding and generosity that make
it possible for more Chinese students to enjoy this distinguished book. Since the compression
is made by simply removing some chapters or sections, we hope to keep as far as possible the
elegancy of Dr. Pressman and Dr. Maxim’s writing style.

Thanks to everyone at China Machine Press who have put in great effort to make this
kind of cooperation possible.

The compression is made according to my own experience in teaching and practicing in
software engineering. It is certainly wild open for discussions and suggestions on further

improvements. Your comments are important to us, and would be very much appreciated.

Yue Chen
Zhejiang University
(chenyue@cs.zju.edu.cn)

PREFACE

?’hen computer software succeeds—when it meets the needs of the people who

use it, when it performs flawlessly over a long period of time, when it is easy
to modify and even easier to use—it can and does change things for the better. But
when software fails—when its users are dissatisfied, when it is error prone, when it
is difficult to change and even harder to use—bad things can and do happen. We all
want to build software that makes things better, avoiding the bad things that lurk in
the shadow of failed efforts. To succeed, we need discipline when software is designed
and built. We need an engineering approach.

It has been almost three and a half decades since the first edition of this book
was written. During that time, software engineering has evolved from an obscure idea
practiced by a relatively small number of zealots to a legitimate engineering disci-
pline. Today, it is recognized as a subject worthy of serious research, conscientious
study, and tumultuous debate. Throughout the industry, software engineer has re-
placed programmer as the job title of preference. Software process models, software
engineering methods, and software tools have been adopted successfully across a
broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disci-
plined approach to software, they continue to debate the manner in which discipline
is to be applied. Many individuals and companies still develop software haphazardly,
even as they build systems to service today’s most advanced technologies. Many pro-
fessionals and students are unaware of modern methods. And as a result, the quality
of the software that we produce suffers, and bad things happen. In addition, debate
and controversy about the true nature of the software engineering approach continue.
The status of software engineering is a study in contrasts. Attitudes have changed,
progress has been made, but much remains to be done before the discipline reaches
full maturity.

The eighth edition of Software Engineering: A Practitioner’s Approach is intended
to serve as a guide to a maturing engineering discipline. The eighth edition, like the
seven editions that preceded it, is intended for both students and practitioners, re-
taining its appeal as a guide to the industry professional and a comprehensive intro-
duction to the student at the upper-level undergraduate or first-year graduate level.

The eighth edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and im-
portant software engineering processes and practices. In addition, we have further
enhanced the popular “support system” for the book, providing a comprehensive set
of student, instructor, and professional resources to complement the content of the
book. These resources are presented as part of a website (www.mhhe.com/pressman)
specifically designed for Software Engineering: A Practitioner’s Approach.

The Eighth Edition. The 26 chapters of the eighth edition are organized into four
parts. This organization better compartmentalizes topics and assists instructors who
may not have the time to complete the entire book in one term.

PREFACE vii

Part 1, The Process, presents a variety of different views of software process, consid-
ering all important process models and addressing the debate between prescriptive
and agile process philosophies. Part 2, Modeling, presents analysis and design meth-
ods with an emphasis on object-oriented techniques and UML modeling. Part 3,
Quality Management, presents the concepts, procedures, and methods that enable
a software team to assess software quality, conduct SQA procedures, and apply an
effective testing strategy and tactics. Part 4, Managing Software Projects, presents
topics that are relevant to those who plan, manage, and control a software develo-
pment project. Continuing in the tradition of past editions, a series of sidebars is used
throughout the book to present the trials and tribulations of a (fictional) software team
and to provide supple-mentary materials about methods and tools that are relevant
to chapter topics.

Acknowledgments. Special thanks go to Tim Lethbridge of the University of Ottawa
who assisted us in the development of UML and OCL examples, and developed the
case study that accompanies this book, and Dale Skrien of Colby College, who devel-
oped the UML tutorial in Appendix 1. Their assistance and comments were invaluable.
In addition, we'd like to thank Austin Krauss, Senior Software Engineer at Treyarch,
for providing insight into software development in the video game industry. We also
wish to thank the reviewers of the eighth edition: Manuel E. Bermudez, University of
Florida; Scott DeLoach, Kansas State University; Alex Liu, Michigan State University;
and Dean Mathias, Utah State University. Their in-depth comments and thoughtful
criticism have helped us make this a much better book.

Special Thanks. BRM: I am grateful to have had the opportunity to work with Roger
on the eighth edition of this book. During the time I have been working on this book
my son Benjamin shipped his first MobileApp and my daughter Katherine launched
her interior design career. I am quite pleased to see the adults they have become.
I am very grateful to my wife, Norma, for the enthusiastic support she has given me as
I filled my free time with working on this book.

RSP: As the editions of this book have evolved, my sons, Mathew and Michael, have
grown from boys to men. Their maturity, character, and success in the real world
have been an inspiration to me. Nothing has filled me with more pride. They now have
children of their own, Maya and Lily, who start still another generation. Both girls are
already wizards on mobile computing devices. Finally, to my wife Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still
another edition of “the book.”

Roger S. Pressman
Bruce R. Maxim

ABOUT THE AUTHORS

Roger S. Pressman is an internationally recognized consultant and author in soft-
ware engineering. For more than four decades, he has worked as a software engi-
neer, a manager, a professor, an author, a consultant, and an entrepreneur.

Dr. Pressman is president of R. S. Pressman & Associates, Inc., a consulting
firm that specializes in helping companies establish effective software engineer-
ing practices. Over the years he has developed a set of techniques and tools that
improve software engineering practice. He is also the founder of Teslaccessories,
LLC, a start-up manufacturing company that specializes in custom products for
the Tesla Model S electric vehicle.

Dr. Pressman is the author of nine books, including two novels, and many techni-
cal and management papers. He has been on the editorial boards of IEEE Software
and The Cutter IT Journal and was editor of the “Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He has presented tutorials at the International Conference on Soft-
ware Engineering and at many other industry meetings. He has been a member of
the ACM, IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma.

Bruce R. Maxim has worked as a software engineer, project manager, professor,
author, and consultant for more than thirty years. His research interests include
software engineering, human computer interaction, game design, social media,
artificial intelligence, and computer science education.

Dr. Maxim is associate professor of computer and information science at the
University of Michigan—Dearborn. He established the GAME Lab in the College
of Engineering and Computer Science. He has published a number of papers on
computer algorithm animation, game development, and engineering education.
He is coauthor of a best-selling introductory computer science text. Dr. Maxim
has supervised several hundred industry-based software development projects
as part of his work at UM-Dearborn.

Dr. Maxim’s professional experience includes managing research informa-
tion systems at a medical school, directing instructional computing for a medical
campus, and working as a statistical programmer. Dr. Maxim served as the chief
technology officer for a game development company.

Dr. Maxim was the recipient of several distinguished teaching awards and a
distinguished community service award. He is a member of Sigmg Xi, Upsilon Pi
Epsilon, Pi Mu Epsilon, Association of Computing Machinery, IEEE Computer
Society, American Society for Engineering Education, Society of Women Engineers,
and International Game Developers Association.

TABLE OF CONTENTS

CHAPTER 1 THE NATURE OF SOFTWARE 1}
1.1 The Nature of Software 3
1.1.1 Defining Software 4
1.1.2 Software Applicafion Domains 6
1.1.3 legacy Software 7
1.2 The Changing Nature of Software Q@
121 WebApps 9
1.2.2 Mobile Applications 9
1.2.3 Cloud Computing 10
1.2.4 Product Line Software 11
PROBLEMS AND POINTS TO PONDER |2
FURTHER READINGS AND INFORMATION SOURCES 12

CHAPTER 2 SOFTWARE ENGINEERING 14

2.1 Defining the Discipline 15

2.2 The Software Process 16
2.2.1 The Process Framework 17
2.2.2 Umbrella Activities 18
2.2.3 Process Adaptation 18

2.3 Software Engineering Practice 19
2.3.1 The Essence of Practice 19
232 General Principles 21

2.4 Software Development Myths 23

2.5 How It All Starts 26

PROBLEMS AND POINTS TO PONDER 27

FURTHER READINGS AND INFORMATION SOURCES 27

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 3¢

3.1 A Generic Process Model 31

3.2 Defining a Framework Activity 32
3.3 Identifying a Task Set 34

3.4 Process Patterns 35

PROBLEMS AND POINTS TO PONDER 37

FURTHER READINGS AND INFORMATION SOURCES 38

x TABLE OF CONTENTS

CHAP'I‘?::R 4 PROCESS MODELS 39

4.1 Prescriptive Process Models 40
411 The Waterfall Model 40
4.1.2 Incremental Process Models 42

4.1.3 Evolutionary Process Models 44

4.1.4 Concurrent Models 48

4,15 A Final Word on Evolutionary Processes 50
4.2 Specialized Process Models 51

421 Component-Based Development 52

422 The Formal Methods Model 52

4.2.3 AspectOriented Software Development 53
4.3 The Unified Process 54

4.3.1 A Brief History 55

4.3.2 Phases of the Unified Process 55
4.4 Product and Process 57
PROBLEMS AND POINTS TO PONDER 59
FURTHER READINGS AND INFORMATION SOURCES 59

CHAPTER 6§ AGILE DEVELOPMENT 60

5.1 What Is Agility? 62
5.2 Agility and the Cost of Change 62
5.3 Whatls an Agile Process? 63
5.3.1 Agility Principles 64
5.3.2 The Politics of Agile Development 65
54 Exireme Programming 66
54.1 The XP Process 66
54,2 Industrial XP 69
5.5 Other Agile Process Models 71
5.5.1 Scrum 72
552 Dynamic Systems Development Method 73
5:5:8 Agile Modeling 74
5.54 Agile Unified Process 76
5.6 ATool Set for the Agile Process 77
PROBLEMS AND POINTS TO PONDER /8
FURTHER READINGS AND INFORMATION SOURCES 79

CHAPTER &6 HUMAN ASPECTS OF SOFTWARE ENGINEERING

81

6.1 Characterisfics of a Software Engineer 82
6.2 The Psychology of Software Engineering 83
6.3 The Software Team 84
6.4 Team Structures 86
6.5 Agile Teams 87
6.5.1 The Generic Agile Team 87
6.5.2 The XP Team 88
6.6 The Impact of Social Media 89
6.7 Software Engineering Using the Cloud 91
6.8 Collaboration Tools 92
6.9 Global Teams 93

PART TWO

TABLE OF CONTENTS «xi

PROBLEMS AND POINTS TO PONDER 94
FURTHER READINGS AND INFORMATION SOURCES @5

MODELING 97

CHAPTER 7 UNDERSTANDING REQUIREMENTS 928

7.1 Requirements Engineering 99
7.2 Establishing the Groundwork 105
7.2.1 Identifying Stakeholders 106

7.2.2 Recognizing Multiple Viewpoints 106
7.2.8 Working toward Collaboration 107
7.24 Asking the First Questions 107
7.3 Eliciting Requirements 108
7.3\ Collaborative Requirements Gathering 109
7:3:2 Quality Function Deployment 112
7.3.3 Usage Scenarios 112
7.3.4 Elicitation Work Products 113
7.3.5 Agile Requirements Elicitation 114
7.3.6 Service-Oriented Methods 114
7.4 Developing Use Cases 115
7.5 Building the Analysis Model 120
7.5.1 Elements of the Analysis Model 120
752 Analysis Patterns 123
7.5.3 Agile Requirements Engineering 124
7.54 Requirements for Self-Adaptive Systems 124
7.6 Avoiding Common Mistakes 125
PROBIEMS AND POINTS TO PONDER 125
FURTHER READINGS AND OTHER INFORMATION SOURCES 126

CHAPTER 8 REQUIREMENTS MODELING: SCENARIO-BASED
METHODS 128

8.1 Requirements Analysis 129
8.1.1 Overall Objectives and Philosophy 130
8.1.2 Analysis Rules of Thumb 131
8.1.3 Domain Analysis 132
8.1.4 Requirements Modeling Approaches 133

8.2 Scenario-Based Modeling 135
8.2.1 Creating a Preliminary Use Case 135
8.2.2 Refining a Preliminary Use Case 138
8.2.3 Writing a Formal Use Case 139

8.3 UML Models That Supplement the Use Case 141
8.3.1 Developing an Activity Diagram 142
8.3.2 Swimlane Diagrams 143

PROBLEMS AND POINTS TO PONDER 144

FURTHER READINGS AND INFORMATION SOURCES 145

xii

TABLE OF CONTENTS

CHAPTER ¢ REQUIREMENTS MODELING: CLASS-BASED METHODS

146

9.1 Identifying Analysis Classes 147

9.2 Specifying Atiributes 150

Q.3 Defining Operations 151

9.4 ClassResponsibilityCollaborator Modeling 154
9.5 Associations and Dependencies 160

9.6 Analysis Packages 161

PROBLEMS AND POINTS TO PONDER 162

FURTHER READINGS AND INFORMATION SOURCES 163

CHAPTER 10 REQUIREMENTS MODELING: BEHAVIOR, PATTERNS,
AND WERB/MOBILE APPS 104

10.1 Creating a Behavioral Model 165
10.2 Identifying Events with the Use Case 165
10.3 Stafe Representations 166
10.4 Patterns for Requirements Modeling 169
10.4.1 Discovering Analysis Patterns 170
10.4.2 A Requirements Pattern Example: Actuator-Sensor - 171
PROBLEMS AND POINTS TO PONDER 175
FURTHER READINGS AND INFORMATION SOURCES 176

CHAPTER 11 DESIGN CONCEPTS 127

11.1 Design within the Context of Software Engineering 178
The Design Process 181
11.2.1 Software Quality Guidelines and Attributes 181
11.2.2 The Evolution of Software Design 183
11.3 Design Concepts 184
11.3.1 Abstraction 185
11.3.2 Architecture 185
19:3.8 Patterns 186
11.3.4 Separation of Concerns 187
11.3.5 Modularity 187
11.3.6 Information Hiding 188
11.3.7 Funcfional Independence 189
11.3.8 Refinement 190
11.3.9 Aspects 190
11.3.10 Refactoring 191
11.3.11 ObjectOriented Design Concepts 191
11.3.12 Design Classes 192
11.3.13 Dependency Inversion 194
11.3.14 Design for Test 195
11.4 The Design Model 196
11.4.1 Data Design Elements 197
11.4.2 Architectural Design Elements 197
11.4.3 Interface Design Elements 198
11.44 Componentlevel Design Elements 200
11415 Deploymentlevel Design Elements 201
PROBLEMS AND POINTS TO PONDER 202
FURTHER READINGS AND INFORMATION SOURCES 203

TABLE OF CONTENTS xiii

CHAPTER 12 ARCHITECTURAL DESIGN 204

12.1 Software Architeciure 205
T2 What Is Architecture? 205
12.1.2 Why Is Architecture Important? 206
12.1.3 Architectural Descriptions 207
12.1.4 Architectural Decisions 208

12.2 Architectural Genres 209

12.3 Architectural Styles 210
12.3.1 A Brief Taxonomy of Architectural Styles 210
12.3:2 Architectural Patterns 215
12.3.3 Organization and Refinement 215

12.4 Architectural Considerations 216

12.5 Architectural Decisions 218

12.6 Architectural Design 219
12.6.1 Representing the System in Context 219
12.6.2 Defining Archetypes 221
12.6.3 Refining the Architecture into Components 222
12.6.4 Describing Insfantiations of the System 224
12.6.5 Architectural Design for Web Apps 225
12.6.6 Architectural Design for Mobile Apps 226

12.7 Assessing Alternative Architectural Designs 226

12.7.1 Architectural Description languages 228
12.7.2 Architectural Reviews 229

2.8 lessons learned 230

2.9 Patternbased Architecture Review 230

2.10 Architecture Conformance Checking 231

2.11 Agility and Architecture 232

PROBLEMS AND POINTS TO PONDER 234

FURTHER READINGS AND INFORMATION SOURCES 234

CHAPTER 13 COMPONENT-LEVEL DESIGN 234

13.1 What Is a Component? 237
13.1.1 An ObjectOriented View 237
13:1:2 The Traditional View 239
13.1.3 A ProcessRelated View 242
13.2 Designing ClassBased Components 242
13.2.1 Basic Design Principles 243
13.2.2 Componentlevel Design Guidelines 246
13.2.3 Cohesion 247
13.24 Coupling 249
13.3 Conducting Componentlevel Design 250
13.4 Componentlevel Design for WebApps 256
13.4.1 Content Design at the Component Llevel 257
13.4.2 Functional Design at the Component level 257
13.5 Designing Traditional Componenis 257
13.6 ComponentBased Development 258
13.6.1 Domain Engineering 259
13.6.2 Component Qualification, Adaptation, and Composition 259
13.6.3 Architectural Mismatch 261
13.6.4 Analysis and Design for Reuse 262

xiv TABLE OF CONTENTS

13.6.5 Classifying and Refrieving Components 262
PROBIEMS AND POINTS TO PONDER 264
FURTHER READINGS AND INFORMATION SOURCES 264

CHAPTER 14 USER INTERFACE DEBIGN 264

14.1 The Golden Rules 267
14.1.1 Place the User in Control 267
14.1.2 Reduce the User's Memory load 268
14.1.3 Make the Interface Consistent 270
14.2 User Interface Analysis and Design 271
14.2.1 Interface Analysis and Design Models 271
142.2 The Process 272
14.3 Interface Analysis 274
14.3.1 User Analysis 274
14.3.2 Task Analysis and Modeling 275
14.3.3 Andlysis of Display Content 280
14.3.4 Andlysis of the Work Environment 280
14.4 Interface Design Steps 281
14.4.1 Applying Inferface Design Steps 281
14.4.2 User Interface Design Patterns 283
1443 Design Issues 284
14.5 Design Evaluation 286
PROBLEMS AND POINTS TO PONDER 288
FURTHER READINGS AND INFORMATION SOURCES 289

PART THREE QUALITY MANAGEMENT 291

CHAPTER 15 QUALITY CONCEPTS 292

15.1 What Is Quality? . 293
152 Software Quality 294
15.2.1 Garvin's Qualify Dimensions 295
15.2.2 McCall's Quality Factors 296
15.2.3 ISO 9126 Qudlity Factors 298
15.2.4 Targeted Quality Factors 298
15.2.5 The Transition to a Quantitative View 300
15.3 The Software Quality Dilemma 300
15.3.1 “Good Enough” Software 301
15.3.2 The Cost of Quality 302
15.3:3 Risks 304
15.3.4 Negligence and liability 305
15.3.5 Quality and Security 305
15.3.6 The Impact of Management Actions 306
15.4 Achieving Software Quality 307
15.4.1 Software Engineering Methods 307
15.4.2 Project Management Techniques 307
15.4.3 Quality Control 307
15.4.4 Quality Assurance 308
PROBLEMS AND POINTS TO PONDER 308
FURTHER READINGS AND INFORMATION SOURCES 309

CHAPTER 146

SOFTWARE QUALITY ASSURANCE 310

TABLE OF CONTENTS xv

16.1
16.2
16.3
16.4

16.5
16.6

16.7

16.8
16.9
16.10

PROBLEMS AND POINTS TO PONDER

Background Issues 311
Elements of Software Quality Assurance 312
SQA Processes and Product Characteristics 314

SQA Tasks, Goals, and Metrics 314
16.4.1 SQA Tasks 315
16.4.2 Godls, Atfributes, and Metrics 316

Formal Approaches to SQA 318

Statistical Software Quality Assurance 318

16.6.1 A Generic Example 319

16.6.2 Six Sigma for Software Engineering 320
Software Reliability 321

16.7.1 Measures of Reliability and Availability 321
16.7.2 Software Safety 322

The ISO 9000 Quality Standards 323

The SQA Plan 325

A Framework for Product Metrics 325

16.10.1 Measures, Mefrics, and Indicators 325
16.10.2 The Challenge of Product Metrics 326
16.10.3 Measurement Principles 327

16.104 GoalOriented Software Measurement 327
16.10.5 The Attributes of Effective Software Mefrics 328

329

FURTHER READINGS AND INFORMATION SOURCES 330

CHAPTER 17 SOFTWARE TESTING STRATEGIES 332
17.1 A Strategic Approach to Software Testing 332
17.1.1 Verification and Validation 334
17.1.2 Organizing for Software Testing 334
17.1.3 Software Testing Strategy—The Big Picture 335
17.1.4 Ciiteria for Completion of Testing 338
17.2 Strategic Issues 338
17.3 Test Strategies for Conventional Software 339
17.3.1 Unit Testing 339
17.3.2 Integration Testing 341
17.4 Test Strategies for ObjectOriented Software 347
17.4.1 Unit Testing in the OO Context 347
17.4.2 Integration Testing in the OO Context 347
17.5 Validation Testing 348
17.5.1 Validation-Test Criteria 348
17.5.2 Configuration Review 349
17.5.3 Alpha and Befa Testing 349
17.6 System Testing 350
17.6.1 Recovery Testing 350
17.6.2 Security Testing 351
17.6.3 Stress Testing 351
17.6.4 Performance Testing 352
17.6.5 Deployment Testing 352
17.7 The Art of Debugging 353

17.7.1 The Debugging Process 353

xvi TABLE OF CONTENTS

17.7.2 Psychological Considerations 354
17.7.3 Debugging Strategies 355
17.7.4 Correcting the Error 357

PROBLEMS AND POINTS TO PONDER 357

FURTHER READINGS AND INFORMATION SOURCES 358

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 360

18.1 Software Testing Fundamentals 361
18.2 Internal and External Views of Testing 363
18.3 WhiteBox Testing 364
18.4 Basis Path Testing 364
18.4.1 Flow Graph Notation 364
18.4.2 Independent Program Paths = 366
18.4.3 Deriving Test Cases 368
18.5 Control Structure Testing 370
18.6 Black-Box Testing 372
18.6.1 Equivalence Partitioning 372
18.6.2 Boundary Value Analysis 373
18.7 ModelBased Testing 374
PROBLEMS AND POINTS TO PONDER 375
FURTHER READINGS AND INFORMATION SOURCES 375

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 377

19.1 Broadening the View of Testing 378
19.2 Testing OOA and OOD Models 379
19.2.1 Correctness of OOA and OOD Models 379
19.2.2 Consistency of ObjectOriented Models 380
19.3 ObjectOriented Testing Strategies 382
19.3.} Unit Testing in the OO Context 382
19.3.2 Integration Testing in the OO Context 383
19.3.3 Validation Testing in an OO Context 383
194 ObjectOriented Testing Methods 383
19.4.1 The TestCase Design Implications of OO Concepts 384
19.42 Applicability of Conventional TestCase Design Methods 385
19.4.3 FaultBased Testing 385
19.4.4 Scenario-Based Test Design 386
19.5 Testing Methods Applicable at the Class level 386
19.5.1 Random Testing for OO Classes 386
19.5.2 Partition Testing at the Class level 387
19.6 Interclass TestCase Design 388
19.6.1 Multiple Class Testing 388
19.6.2 Tests Derived from Behavior Models 390
PROBLEMS AND POINTS TO PONDER 391
FURTHER READINGS AND INFORMATION SOLRCES 392

CHAPTER 20 SECURITY ENGINEERING 393

20.1 Andlyzing Security Requirements 394
20.2 Security and Privacy in an Online World 395

