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OVERVIEW One infinite process that had puzzled mathematicians for centuries
was the summing of infinite series. Sometimes an infinite series of terms added to a
number, as in

[ S G

2 + 4 + 8 + 16 + 15
(You can see this by adding the areas in the “infinitely
halved” unit square at the right.) Sometimes the infinite sum
was infinite, however, as in

1.1, 1. 1.4,
itatatgtst ==
(although this is far from obvious), and sometimes the infinite sum was impossible

to pin down, as in
1-1+1-14+1—-1+ -,

(Is it 0? Is it 1? Is it neither?)

Nonetheless, mathematicians like Gauss and Euler successfully used infinite
series to derive previously inaccessible results. Laplace used infinite series to prove
the stability of the solar system (although that does not stop some people from wor-
rying about it today when they feel that “too many” planets have swung to the same
side of the sun). It was years later that careful analysts like Cauchy developed the
theoretical foundation for series computations, sending many mathematicians (in-
cluding Laplace) back to their desks to verify their results.

Infinite series form the basis for a remarkable formula that enables us to ex-
press many functions as “infinite polynomials” and at the same time tells how much
error we incur if we truncate those polynomials to make them finite. In addition to
providing effective polynomial approximations of differentiable functions, these in-
finite polynomials (called power series) have many other uses. We also see how to
use infinite sums of trigonometric terms, called Fourier series, to represent impor-
tant functions used in science and engineering applications. Infinite series provide
an efficient way to evaluate nonelementary integrals, and they solve differential
equations that give insight into heat flow, vibration, chemical diffusion, and signal
transmission. What you learn here sets the stage for the roles played by series of
functions of all kinds in science and mathematics.
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Sequences and Series

Limits of Sequences of Numbers

Definitions and Notation ® Convergence and Divergence
Calculating Limits of Sequences e Using L'Hopital's Rule e Limits That
Arise Frequently

Informally, a sequence is an ordered list of things, but in this chapter, the things
will usually be numbers. We have seen sequences before, such as the sequence
Xgs X1y« «+ 5 Xy . . . Of numbers generated by Newton’s method. Later we consider
sequences involving powers of x and others involving trigonometric terms like
sin x, cos x, sin 2x, cos 2x, . .., sin nx, cos nx, . .. . A central question is whether
a sequence has a limit or not.

Definitions and Notation

We can list the integer multiples of 3 by assigning each multiple a position:

Domain: 1 2 Busifieig
& & 4 4
Range: 3 6 9 3n

The first number is 3, the second 6, the third 9, and so on. The assignment is a func-
tion that assigns 3n to the nth place. That is the basic idea for constructing se-
quences. There is a function placing each number in the range in its correct ordered
position.

Usually, ng is 1 and the domain of the sequence is the set of positive integers.
Sometimes, however, we want to start sequences elsewhere. We take n, = 0 when
we begin Newton’s method. We might take n, = 3 if we were defining a sequence
of n-sided polygons.

Sequences are defined the same way as other functions, some typical rules
being

amy=Vn, am =1L am=""1

n

(Example 1 and Figure 8.1). To-indicate that the domains are sets of integers, we
use a letter like n from the middle of the alphabet for the independent variable,
instead of the x, y, z, and ¢ used widely in other contexts. The formulas in the
defining rules, however, like those above, are often valid for domains larger than
the set of positive integers. This can be an advantage, as we will see. The number
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all
Diverges
i o)
a, a, ay a, as 2 (3. \5) L
e (1) o
0 1 2 R 4,\4
Gy = 6w
(a) The terms a, = V/n eventually surpass every e = ot e
integer, so the sequence {a,} diverges, . .. 0 1 23 8 -5
an Converges to 0
a3 a 1,1)
\ —|—esee + 1 ° (2. %) (3 l) 4 1 1
(b) . .. but the terms @, = 1/n decrease steadily and 0 1 U3 ( t 4) (5' 5)
get arbitrarily close to 0 as n increases, so the a=1 | | 1 ¢ |
sequence {a,} converges to 0. " n 0[ 1 2 3 4 5
b Converges to 0
1,1
a, a, as ay a, 1 L] (3 _1.)
e 53)
% i b 0 ul-fe THVL
(c) The terms @, = (—1)"*'(1/n) alternate in sign a =(_|)n+1_1_ 0 °
but still converge to 0. " n ( 5 l) (4. - z)
T2
on Converges to 1
4
a, a,a, 1 2 3) (52
+ oo} "2) N e . ¢
(d) The terms a, = (n — 1)/n approach 1 steadily 0 1 (,0) " *
and get arbitrarily close as n increases, so the w1 $ | 1 | | n
sequence {a,} converges to 1. = 0 1 2 3 4 5
a, Diverges
; (.3 .2
<37 e
%% B ay e (1,0 °
(e) The terms a, = (—1)""'[(n — 1)/n] alternate in —es—s 4 oo} e 1 | ] | [
sign. The positive terms approach 1. But the -1 0 1 0 1 2 3 &+ 5 6
negative terms approach — 1 as n increases, so the "H(n _ l) -1 (2_ _é R L e
sequence (a,) diverges. a, = ()" "5 A T Lﬁ' —.é
o Converges to 3
3 ® o o o o o o o o o
PRI N
(f) The terms in the sequence of constants a, = 3 (') i i ; "1 g
have the same value regardless of 7, so the I | ([ S | Y [ A | -
sequence |a,} converges to 3. a, =3 Ol 1 23456 7 8 910

FIGURE 8.1 The sequences of Example 1 are graphed here in two different ways: by plotting the numbers a, on a horizontal axis .
and by plotting the points (n, a,) in the coordinate plane.
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a(n) is the nth term of the sequence, or the term with index n. If a(n) =
(n — 1)/n, we have

First term Second term Third term nth term

= =1 =2 >
a(l) =0 a(2) 2 a(3) 3 s b a(n)
When we use the subscript notation a, for a(n), the sequence is written

a; =0, a, =

l a, = = Ay =
2, 3 i avel y n

To describe sequences, we often write the first few terms as well as a formula for
the nth term.

Example 1  Describing Sequences
For the sequence whose

We write defining rule is
(@ 1,V2,V3,V4,...,Vn,... a,=Vn

1 1 _ 1
(b) 1 '3 e a, =75

11_1 et 1 = (— n+|1

©1,- 2'3° 3 N Gt ) i a,= (-1

1 23 n—1 _n—1
(d) hprgrgr a,="

12 _3 a1 (n—1 _aiiq =1
(e) O: 5751 Zv !( 1)+ < n )7 a _( l)+ (T)
® 3,3,3,. i a,=3

U

Notation We refer to the sequence whose nth term is a, with the notation {a,}
(“the sequence a sub n”). The second sequence in Example 1 is {1/n} (“the se-
quence 1 over n”); the last sequence is {3} (“the constant sequence 3”).

Convergence and Divergence

As Figure 8.1 shows, the sequences of Example 1 do not behave the same way. The
sequences {1/n}, {(—1)"*!(1/n)}, and {(n — 1)/n} each seem to approach a single
limiting value as n increases, and {3} is at a limiting value from the very first. On
the other hand, terms of {(—1)"*'(n — 1)/n} seem to accumulate near two different
values, —1 and 1, whereas the terms of {Vn} become increasingly large and do not
accumulate anywhere.

The following definition distinguishes those sequences that approach a unique
limiting value L, as » increases, from those that do not.
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. CD-ROM 1 L-e L Lte
WEBsite 0 a,a, a  ay' a7
‘ Historical Biography
a’l
Nicole Oresme 1
(ca. 1320 — 1382) L4 €
Lp=——————————- (na,)-2-5-——-
- L—-e€ . .
. & W, ay) FIGURE 8.2 a,—> Lify=Lisa
° ° " horizontal asymptote of the sequence
L ] . .
L1 [ 1| of points {(n, a,)}. In this figure, all
of 1 2 3 N n " the a,’s after ay lie within e of L.

Example 2  Testing the Definition
Show that

@ lim 1=0

n—o

(b) lim k= k (any constant k).
n—o

Solution

(a) Let € > 0 be given. We must show that there exists an integer N such that for
all n,

<eE€.

n>N = ‘%—0

This implication will hold if (1/n) < € or n > 1/e. If N is any integer
greater than 1/e, the implication will hold for all » > N. This proves
lim, ,,, (1/n) = 0.

(b) Let e > 0 be given. We must show that there exists an integer N such that for
all n,

n>N= |k—k|<e.

Since k — k = 0, we can use any positive integer for N and the implication

will hold. This proves that lim,_,., k = k for any constant k.
AR
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Example 3 A Divergent Sequence
Show that {(—1)"*'[(n — 1)/n]} diverges.

Solution  Take a positive € smaller than 1 so that the bands shown in Figure
8.3 about the lines y = 1 and y = —1 do not overlap. Any € < 1 will do. Conver-
gence to 1 would require every point of the graph beyond a certain index N to lie
inside the upper band, but this will never happen. As soon as a point (n, a,) lies
in the upper band, every alternate point starting with (n + 1, a,,,) will lie in the
lower band. Hence, the sequence cannot converge to 1. Likewise, it cannot con-
verge to — 1. On the other hand, because the terms of the sequence get alternately
closer to 1 and —1, they never accumulate near any other value. Therefore, the
sequence diverges.

aga, a, a, asas

e

-1 0 1
n—1
a, = (_1)"+l (_"n )
Neither the e-interval about 1 nor the

e-interval about —1 contains all a,,
satisfying n > N for some N.

1-€
(1,0
B S N TN N B s
0
1\ s 1+e
-2 __(,_%)__(6}_%) _____ FIGURE 8.3 The sequence

-1-¢ {(=1)"'[(n — 1)/n]} diverges.

The behavior of {(=1)""'[(n — 1)/n]} is qualitatively different from that of
{V/n}, which diverges because it outgrows every real number L. To describe the
behavior of {\/;}, we write

lim (Vn) = .
In speaking of infinity as a limit of a sequence {a,}, we do not mean that the differ-
ence between a, and infinity becomes small as #n increases. We mean that a, be-
comes numerically large as n increases.

Calculating Limits of Sequences

The study of limits would be cumbersome if we had to answer every question about
convergence by applying the definition. Fortunately, three theorems make this
largely unnecessary. The first theorem is not surprising, based on our previous work
with limits. We omit the proofs.
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Example 4  Applying the Limit Laws

By combining Theorem 1 with the limit results in Example 2, we have

(@ lim (—%)=—1-g§%=—1-0=0

® i (") = tim (1-4) = pm 1 im f=1 0=
© lim 5 =5-1m %-1im L=5-0-0=0

@ tim S0 = g (S ==

Example 5  Constant Multiples of Divergent Sequences Diverge

Every nonzero multiple of a divergent sequence {a,} diverges. Suppose, to the
contrary, that {ca,} converges for some number ¢ # 0. Then, by taking k = 1/c
in the Constant Multiple Rule in Theorem 1, we see that the sequence

% cca, = [a,,]
converges. Thus, {ca,} cannot converge unless {a,} also converges. If {a,} does

not converge, then {ca,} does not converge.

You are asked to prove the next Theorem in Exercise 69.




