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PREFACE

It is almost a trivial observation that many collective endeavours require the
accomplishment of numerous complicated tasks, and that the different individuals
that perform them may lose sight of the overall design. Like other creative endeav-
ours, the scientific quest is particularly prone to such a state of affairs, for not only
does the difficulty of the tasks absorb the mind but the beauty of what is learnt in
performing them engages the soul. Like a diver, who may be so charmed by the
nearby coral so as to forget that its beauty is but a minute reflection of the majestic
beauty of the ocean, a spectroscopist may be so taken by the beautiful symmetries
that the molecules exhibit so as to loose sight of the wonderful structure of quantum
mechanics that informs them.

* ok %

For many years, I have taught a graduate course on non-relativistic quantum me-
chanics at the University of British Columbia. As a first graduate course in the
subject, it was to provide a good understanding of the principles as well as the
necessary basic skills for the application of quantum mechanics to a diversity of
fields. The students, coming, as the' did, from universities all over the world, had
very diverse backgrounds and I could not assume that every one of them had a
good grasp of the basic principles of quantum mechanics, all I could assume was
that they all had studied the standard elementary applications. Because the course
was required of all graduate students in Physics, the prospective fields of its audi-
ence ranged widely — from quantum field theory to physical oceanography —, which
meant that I could not maintain their interest by centring the lectures on any par-
ticular field of application. Faced with these constraints, I felt that the best way of
achieving the aims of the course was to present the theory of quantum mechanics
taking care to exhibit its coherence and beauty, hoping to maintain the students’
interest by appealing to their aesthetic sense. Now that I am nearing the end of
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my teaching career, I feel that the approach taken was successful, and I have the
satisfaction of knowing that this feeling is shared by many of my former students.

The present book was born of the experience gained in teaching the course
just described. It is not meant to be a textbook for such a course. It covers less
material than the course did, but treated in more depth. As a first approximation,
the book might be described as a coherent presentation of the core of the course
augmented by the answers to questions that many of my students and some of
my colleagues have put to me in the course of the years. Many of these questions
I could not answer by reference to the literature, for the available answers were
presented at a level not accessible to those that formulated them.

In spite of the suggestions that I received from students and colleagues I would
not have undertaken the task of writing this book had it not been for my own desire
to have a comprehensive overview of quantum mechanical theory and gain a better
appreciation of its beauty. I feel now that the exercise was worth the effort and I
hope that the reader would gain as much aesthetic satisfaction from reading this
book as the author gained from writing it.

To limit the size of the book, I had to decide what not to include. It was clear
to me that those problems which are solved in detail in every textbook (e.g., the
hydrogen atom) could be left out, unless they were necessary for the development
of the presentation (such as the harmonic oscillator) or particularly useful as illus-
trations of the theory. More difficult was the decision not to include approximate
methods and scattering theory because, although these two subjects have in some
sense an ancillary status within the general theory, not only are they of essential
importance in the applications but they also have had an enormous influence in the
way we think about the physical world. Even more difficult was the decision not to
treat the quantization of fields more extensively and just to touch it very briefly in
connection with the study of an assembly of particles.

I had no difficulty in deciding not to include a discussion of the interpretations
of quantum mechanics nor of the closely related problem of measurement. These
extremely interesting questions lie in a “metalevel” above quantum theory and, in
my opinion, would require a full volume to be properly discussed.

What is included constitutes the core of non-relativistic quantum-mechanical
theory, the elements needed to properly understand the developments of the subject
and its applications.

As can be gathered from the introductory paragraphs of this preface, these
elements are presented with a different emphasis than is common in the standard
textbooks, and at a higher level, but without requiring from the reader more than a
working knowledge of quantum mechanics on the physical side, and the mathemat-
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ical background in algebra and analysis normally acquired at the undergraduate
level. This book occupies a largely empty niche between the usual textbooks and
the more mathematically advanced writings on the subject. I expect it would be of
interest both to graduate students and to many practising scientists who would like
to delve a little into the structure of quantum mechanics and into the mathematical
notions that underlie it.

Quantum systems cannot be described in terms of our sensory experience,
to understand them it is necessary to use the abstract language provided by the
algebra of linear operators on a Hilbert space. For this reason, three mathemat-
ical appendices have been included. For ease of reference, their paragraphs are
numbered and are often referred to in the main text. Appendix A reviews finite-
dimensional vector spaces; the necessary results in the theory of Hilbert spaces are
summarized in Appendix B, while Appendix C presents some elements of the the-
ory of distributions leading to an explanation of the mathematical basis of Dirac’s
formalism. The first four chapters of the book make use of the material in sections
1 to 3 of Appendix A which are mostly intended to serve as a reminder. Before
embarking in a thorough reading of the rest of the book, the reader is invited to
peruse the final sections of Appendix A as well as appendices B and C. A fourth
appendix, D, includes some pertinent results in classical mechanics.

Group theoretical considerations pertaining mostly to the Galilei and to the
symmetric groups play an important part in the exposition. It has been possible
to develop them without assuming on the part of the reader much more than a
knowledge of the definition of group. They are not included in the appendices but
in appropriate places in the main body of the text.

A remark on the mathematical aspects of the presentation is in order here.
Our experimental instruments are finite, in size, in energy, and in the number of
configurations that they can exhibit. This implies that, in principle, only the lan-
guage of finite-dimensional vector spaces is needed to explain experimental results
and to understand the structure of quantum mechanics. However, it is extreme-
ly fruitful - and necessary if we want to embed the theory in a space and time
continuum - to consider idealized instruments capable of an infinite number of con-
figurations, which require a description cast in the language of infinite-dimensional
spaces. Because these infinite instruments are approximations of the actual finite
ones, physicists have all reason to ignore those properties of the infinite-dimensional
Hilbert space that cannot be obtained from the properties of finite-dimensional ones
by some, not necessarily unique, physically based limiting procedure. A working
knowledge of the mathematical description that results from the adopted limiting
procedure is necessary to understand many of the developments of quantum me-
chanics. The mathematical presentation reflects these considerations: the results
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pertaining to finite-dimensional spaces, necessary for the understanding of the struc-
ture of quantum mechanics, are presented with thoroughness; their generalizations
to infinite-dimensional spaces are discussed in less detail, although references to the
mathematical literature are given for the benefit of the interested reader.

After an introductory chapter that sets the point of view adopted in the
exposition, the main body of the book can be thought of as being divided into two
parts. In the first one, Chapters II to IV, are presented and elaborated the basic
rules (I prefer this word to “postulates” or “axioms” because it does not imply a
mathematical rigour that the exposition does not have) as they apply to model
systems describable in the language of finite-dimensional spaces. In this way one
can exhibit the basic structure of the theory unencumbered by the mathematical
complications that arise in infinite-dimensional spaces.

The second part deals with the generalization of the theory and its applica-
tions to different types of systems. The general theory is presented in Chapter V,
in which the concept of kinematical symmetries is also introduced and applied to
those symmetries that arise from galilean invariance. Chapters VI and VII which
discuss the particle without internal degrees of freedom are followed by the study
in Chapter VIII of the dynamical symmetries of quantum mechanics; at this point
the reader may find it helpful to review the classical results of Appendix D. The
particle with spin is discussed in Chapter IX, and composite systems in the remain-
ing two chapters. The connection between galilean invariance and the fundamental
observables of a system constitutes the unifying thread that runs through this part
of the book.

Notes, mainly but not exclusively bibliographical, to most sections can be
found after the appendices, followed by a selected bibliography.

A standard nomenclature has been adopted; minor exceptions are the use of
“density operator” in preference to the more generally used “density matrix”, of
“commensurable observables” that seems more appropriate than “compatible” or
“simultaneously measurable observables” and of “maximal observable” instead of
the lengthier “complete set of commuting observables”.

Dirac’s formalism and notation is used throughout the main body of the book.
From the mathematical point of view, however, this notation has some disadvan-
tages; for this reason and because the use of Dirac’s notation is not universal, the
main results of the mathematical appendices are given in ordinary notation. Each
section of these appendices ends with an explanation of the connection between the
two notations.

For reference, mathematical expressions within a chapter are numbered in the
common decimal system. Within each chapter, they are referred to by their number
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le.g., (3.5)]. In the references across chapters the expression number is preceded by
the chapter number [e.g, (I1.3.5)]. Paragraphs in the appendices are also numbered
in the decimal system (but not enclosed in parentheses) and referred to in a similar
manner (e.g., paragraph 3.2.2 of Appendix B will be referred to as 3.2.2 from
within the appendix and as B.3.2.2 from without). Mathematical expressions in
the appendices are not numbered.

* ¥ %

I owe a debt of gratitude to all those that made possible the writing of this
book. I am particularly indebted to the many former students whose comments and
questions contributed so much to my understanding of quantum mechanics. Among
them, I would dare to name Ulrike Narger, Steve Patitsas, Mark Shegelski and Mike
Sofer, who collaborated with me in the teaching of the subject. My thanks are also
due to all those colleagues with whom I have discussed many of the topics included
in this book and, especially, to F.W. Dalby whose provocative questions always
demanded an answer. My readings, of course, influenced the shaping of my course
and are reflected in my writing. Two books I should mention in this connection:
Messiah’s Quantum Mechanics and Jauch’s Foundations of Quantum Mechanics.
To their authors I express my gratitude.

In the latter stages of the preparation of this book, I received valuable com-
ments from Mark MacLean, who kindly agreed to read the mathematical appen-
dices, and essential technical help from Janet Clark, who typeset the manuscript
in TEX. To both of them, my sincere thanks.

In concluding this preface, I must ask the reader to forgive the dryness of my
style, for the language in which I am writing is not the language in which I learned
to laugh and to cry.

Vancouver, April 1995.
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INTRODUCTION

The subject matter of this book is Non-relativistic Quantum Mechanics, a theory
which, needless to say, explains an enormous wealth of observations. This fact by
itself would constitute a sufficient reason to study. the theory in some depth. But
there are also other reasons. Non-relativistic Quantum Mechanics, which we shall
simply call Quantum Mechanics, rests on a sound mathematical basis which means
that the basic concepts of the theory can be understood precisely. This precise
understanding is essential to understand and to contribute to the development of
two broad fields at the limits of our present knowledge. One is the relativistic
theory of quantum fields which constitutes today one of the frontiers of theoretical
physics. The other, that lies at the boundary between physics and philosophy, is
the understanding of the relation between ourselves and the world that we study.

While the physical observations are non-mathematical entities ultimately ac-
cessible to our senses, the theory introduces some fundamental concepts that are
mathematical and cannot be explained by appealing to our sensory experience.
As a consequence it is not possible to understand Quantum Mechanics without
understanding the mathematical theory in which those concepts arise.

It is the purpose of this chapter to explain in some detail the brief remarks
of the previous paragraph.

1. Description of experiments

There are of course many reasons that may lead physicists to conceive of an ex-
periment. One may want to test a prediction of a more or less well developed
theory. Another may be seeking some orientation in the development of a tenta-
tive theoretical formulation. Still another may want to determine the properties of
some material with an eye to possible applications. Whatever the motivation, in
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most if not in all cases, the experimenter has in mind some more or less elaborated
theoretical framework to guide him in the design of the experiment.

Once the design has been completed the experimenter decides what instru-
ments are needed, proceeds to draft them in detail, and has them built in the
technical shop.! The important point to be made here is that the detailed plans of
the instruments are completely understandable to the shop staff even if they know
nothing about the theoretical ideas that guided the design.

After the experimental instruments have been built and assembled, the ex-
periment, which may consist of one or more experimental runs, is performed.

At the start of an experimental run some of the instruments are adjusted by
manipulating knobs or other devices until their settings, as verified by the readings
of appropriate dials, are the desired ones. Some time later the run is completed
by noting another set of dial readings which constitutes the experimental results of
the run.

When the predictions of a theory are statistical, as is the case in quantum
mechanics, an experiment consists usually of many runs with identical initial set-
tings of the instruments. Although normally these runs are performed in succession,
we may think of them as starting simultaneously and using identical copies of the
experimental setup.

A proper account of the experiment can be phrased in plain language in the
sense that it need not contain any reference to the theoretical ideas that entered in
its conception; all that is required is a description of the experimental instruments,
the instrumental settings at the start, and the dial readings at the completion
of each run. As already remarked, the instruments can be built, and therefore
described, without any use of those theoretical ideas, while the readings of the
different instruments consist merely of a set of numbers that refer to some variable
characteristics incorporated in the construction of those instruments. Of course, in
reporting the experiment, the experimenter usually discusses the theoretical ideas
that led to its conception and the significance of the results in relation to those
ideas but this part of the report constitutes an interpretation of the experiment,
not an account of it.

In practice it is generally true that the instructions for the construction of
the experimental instruments are phrased in plain language. On the other hand,
in an article intended to describe an experiment to other workers in the field one
often finds sentences such as “the proton beam was focused on the target” which

! Some instruments may, of course, have been designed by somebody else and be available from the shelf
but this and other such details are clearly irrelevant for our purposes.
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is certainly not expressed in plain language, for it contains an obvious reference to
the theoretical ideas used in designing the experiment. That sentence, however,
could have been replaced by something like “the current in the coils labelled A in
the diagram was adjusted until a maximum signal was obtained in the detector”.
Another experimenter will know that that was precisely what was done and what
he would have to do if he wanted to repeat the experiment. The original sentence
is expressed in a sort of shorthand which is based on shared theoretical ideas. Such
a shorthand is extremely useful and even essential, for without it communication
among physicists would be unbearably slow, but it should be used with care if one
wants to avoid ambiguities. Indeed the history of the development of Quantum Me-
chanics shows that its uncritical use can lead to apparent paradoxes and conceptual
€rrors.

2. The concept of physical system

In analyzing an experiment which can be satisfactorily explained by classical physics,
it is not the experimental instruments which are stressed in the analysis but rather
the system on which the experiment is done. This is so because the concept of
system as some physical object separate from the other instruments used in the
experimental setup is easy to define precisely.

To illustrate the last remark let us look at a simple example from classical
mechanics. Imagine an experiment designed to determine the range of an artillery
piece. In each run one measures the velocity of the shell when it leaves the nozzle as
well as the horizontal distance that it travels. To analyze the experiment one may
choose the shell as “the system”. The state of the system at any time is given by the
values at that time of an appropriate set of coordinates and velocities of the shell.
We say that the theory of classical mechanics (including in this case aerodynarnics)
explains the experiment because it permits us to write a closed system of equations
that describes the time evoiution of the state of the shell in accordance with the
experimental results.

There are three important properties of a classical mechanical system that
need to be stressed here.

(1) The system (in our example, the shell) is a part of the experimental setup,
constructed as a piece separate from the other experimental instruments, and can
therefore be described precisely in plain language.

(ii) The state of the system can be determined, at least in principle, at any
time (for example by stroboscopic photography) without altering the predicted
states at future times.
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(iii) The state uniquely determines the value of every mechanical property
(that is, every dynamical variable) of the system.

The precise definition of a classical mechanical system requires, first of all,
that a complete set of coordinates be specified, in the sense that prescriptions
must be given on how to measure them. It is, of course, possible to define the
complete set of coordinates in different ways but the sets so defined are all equivalent
because their coordinates are functions of the coordinates of any particular set.
The characterization of the system is completed by giving certain intrinsic (that
is, pertaining to the system, not to the rest of the experimental setup) parameters,
such as masses or moments of inertia.

Systems that share the same complete set of coordinates will be said to belong
to the same type. Thus the shell of the above example belongs to the type of rigid
bodies. But for two shells to constitute identical systems they must have the same
moment of inertia and geometrical shape (because the aerodynamic forces depend
on the latter). In general we call two systems identical if they belong to the same
type and have the same intrinsic parameters.

A parenthetical remark about nomenclature is in order here. In the above
description we have implicitly assumed that one characteristic of a system is that its
state at any given time uniquely determines, through a closed system of equations
of motion, the state at any future time. A part of a classical mechanical system can
also be assigned a state which is a subset of the set of coordinates and velocities
that constitute the state of the system. Although such a part should properly be
called a subsystem, the prefix is often omitted and the word “system” is loosely
applied to it. As we know, the state of a subsystem at a given time does not, in
general, determine the state at future times, for the motion may depend on the
values of the remaining coordinates and velocities.

There are theories in classical physics in which a system can be defined which
does not have property (i) above. An example is classical electromagnetism. In
many cases it is convenient in this theory to regard the electromagnetic field as
being “the system”, although it is obviously not a piece of equipment that can be
constructed in the shop separately from the rest of the experimental instruments.
The field can be thought of as a physical agent which is produced by some of
the experimental instruments and causes the observed correlations between mea-
surements. However, within the domain of applicability of classical physics, it is
possible, even in this case, to regard the state of the system, i.e., the field, as given
by a set, albeit infinite, of generalized coordinates and velocities such that proper-
ties (ii) and (iii) still hold.? Thus, the field can be treated as a kind of mechanical

2Adminedly property (ii) requires the introduction of idealized test bodies with vanishingly small charges.



