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Preface

In the spectrum of mathematics, graph theory, as a recognized discipline, is a relative
newcomer. In recent five decades, the exciting and rapidly growing area of the
subject abounds with new mathematical developments and significant applications to
real-world problems. More and more colleges and universities have made it a required
course for the senior or the beginning postgraduate students who are majoring in
mathematics, computer science, electronics, scientific management and others. This
book provides a first course in graph theory for these students.

Graphs are mathematical structures used to model pairwise relations between
objects. The richness of theory and the wideness of applications of graphs make
it impossible to include all topics on graphs in a book. All materials presented in
this book, I think, are the most classical, fundamental, interesting and important,
and some of which are new. The method dealt with the materials is to particularly
lay stress on digraphs, regarding undirected graphs as their special cases. My own
experience from teaching out of the subject more than twenty years at University of
Science and Technology of China (USTC) shows that this treatment makes hardly
the course difficult, but much more accords with the essence and the development
trend of the subject.

The book consists of eight chapters. The first two chapters introduce the most
basic concepts and related results. From the third chapter to the eighth chapter,
each chapter focuses on a special topic, including trees and graphic spaces, plane
and planar graphs, lows and connectivity, matchings and independent sets, colorings
and integer flows, graphs and groups. These topics are treated in some depth, both
theoretical and applied, with some suggestions for further reading. Every effort will
be made to strengthen the mutual connections among these topics, with an aim
to make the materials more systematic and cohesive. All theorems will be clearly
stated, together with full and concise proofs, some of them are new. A number of
examples and figures are given to help the reader to understand the given materials.
To explore the mathematical nature and perfection of graph theory better, this book
will specially stress the equivalence of some classical results, such as the max-flow
min-cut theorem of Ford and Fulkerson, Menger’s theorem, Hall’s theorem, Tutte’s
theorem and Konig’s theorem.

To expand the reader’s scope of knowledge, some further reading materials, in-

cluding self-contained proofs of some theorems, new concepts, problems and conjec-
tures, are added to the back of some sections, separated by the stars *...x, at the
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first reading some readers may wish to skip them.

Throughout this book, the reader will see that graph theory has closed connec-
tion with other branches of mathematics, including linear algebra, matrix theory,
group theory, combinatorics, combinatorial optimization and operation research, and
wide applications to other subjects, including computer science, electronics, scien-
tific management and so on. Thus, the reader who will read this book is supposed
to familiarize himself with some basic concepts and methods of linear algebra and
group theory. The applications carefully selected are arranged in the latter sections
of the chapter with some classical and fundamental algorithms.

Exercises of each section, from routine practice to challenging, are supplements
to the text. Some of them are very important results in graph theory. Fhe harder
ones are indicated by bold type.

In the development process of graph theory, people found many important results.
With the loss of time, some findings are gradually being forgotten. So to be able
to indicate the provenance of results is vital. To this end, the book lists related
references and provides brief biographical notes on major scholars mentioned in this
book.

The style of writing and presentation of this book have been, to a great extent,
influenced by Graph Theory with Applications, a popular textbook written by J. A.
Bondy and U. S. R. Murty whom I am grateful to, from which some typical materials
have been directly selected in this book.

The book is developed from the text for a senior and first-year postgraduate
course in one semester at USTC. I would like to thank Graduate School and School
of Mathematical Sciences at USTC for their support and encouragement, and “211
Project” for its financial support.

Many people have contributed, directly or indirectly, to this book. I avail myself
of this opportunity to particularly express my heartfelt gratitude to Li Qiao, Tian
Feng, Liu Yanpei, Shao Jiayu, Chen Yongchuan, Yuan Yaxiang, Zhang Cunquan,
Zhang Shenggui, et al. for their continuous help and valuable suggestions, also to
my students Huang Jia, Yang Chao, Hu Futao, Hong Zhenmu and Li Xiangjun for
drawing elegant diagrams.

Finally, I would like to express my appreciation to my wife, Qiu Jingxia, for her
support, understanding and love, without which this work would have been impos-
sible.

Xu Junming
(xujm@ustc.edu.cn)
October 2014, USTC, Hefei
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Chapter 1
Basic Concepts of Graphs

In many real-world situations, it is particularly convenient to describe the specified
relationship between pairs of certain given objects by means of a diagram, in which
points represent the objects and (directed or undirected) lines represent the rela-
tionship between pairs of the objects. For example, a national traffic map describes
a condition of the communication lines among cities in the country, where the points
represent cities and the lines represent the highways or the railways joining pairs of
cities. Notice that in such diagrams one is mainly interested in whether or not two
given points are joined by a line; the manner in which they are joined is immaterial.
A mathematical abstraction of situations of this type gives rise to the concept of a
graph.

In fact, a graph provides the natural structures from which to construct math-
ematical models that are appropriate to almost all fields of scientific (natural and
social) inquiry. The underlying subject of study in these fields is some set of “ob-
jects” and one or more “relations” between the objects.

In this chapter, we will introduce the concept and the geometric representation
of a graph, terminology and natation, basic operations used in the remaining parts
of the book. It should, for the beginner specially, be worth noting that most graph
theorists use personalized terminology in their books, papers and lectures. Even the
meaning of the word “graph” varies with different authors. We will adopt the most
standard terminology and notation extensively used by most authors, such as Bondy
and Murty! 42, with a subject index and a list of notations in the end of the book.

1. J. A. Bondy (John Adrian Bondy) is a professor of University of Waterloo and Univer-
sité Lyon 1, received his Ph.D. from University of Oxford in 1969. U. S. R. Murty (Uppaluri
Siva Ramachandra Murty) is a professor of University of Waterloo, received his Ph.D. from Indian
Statistical Institute in 1967. Bondy and Murty served as editors-in-chief of Journal of Combi-
natorial Theory, Series B (1985-2004, see this journal, 2004, 90(1):1). They are well known and
respected for many contributions to graph theory. Particularly, their joint textbook Graph Theory
with Applications 42 is acclaimed by readers. The book’s clear exposition and careful choice of
topics made it widely influential, and for many years it was used as the principal reference for graph
theory courses around the world. It is this textbook that plays an important role to standardize
the terminology and notation of graphs. In 2008, they published the new book Graph Theory (43],
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1.1 Graph and Graphical Representation

Let V be a non-empty set. An ordered pair (z,y) or an unorder pair zy is often
used to denote a binary relation between two elements in V, where (z,y) denotes a
unilateral relation from z to y and zy denotes a bilateral relation between z and y.
A set of binary relations on V' can be denoted as a subset of V' x V, the Cartesian
product of V with itself. Mathematically, a graph! G is a mathematical structure
(V, E), denoted by G = (V, E), where EC V x V.

Example 1.1.1 D = (V(D), E(D)) is a graph, where

V(D) = {z1, 22,23, 74,25} and
E(D) = {a'l,aQ, as,a4,0s, a6, a7aa'8}a

and for each i = 1,2,...,8, a; is a unilateral relation defined by

a; = (z1,%2), a2 = (z3,22), a3=(r3,23), as=(z4,23),
as = (z4,72), ag = (T5,%2), a7=(Z2,%5), ag=(T3,%s).

Example 1.1.2 H = (V(H),E(H)) is a graph, where

V(H) = {y1,Y2,¥3,94,ys} and
E(H) = {bl’bQ, b3ab4ab5’b6;b7a bS}a

and for each i = 1,2,...,8, b; is a unilateral relation defined by

b1 = (y1,¥2), b2= (y3,92), b3 = (y3,93), ba= (ya,y3),
bs = (Y4, ¥2), be = (ys5,92), br=(y2,¥5), bs = (y3,¥s).

Example 1.1.3 G = (V(G), E(G)) is a graph, where

V(G) = {zlv 22,23, z4a25,26} and
E(G) = {81,32,83,84,35,66, 67,68569}!

and for each i = 1,2,...,9, e; is a bilateral relation defined by

€1 = 2122, €2 = 2124, €3 = 21%, €4 = 2223, €5 = 2324,
€6 = 2326y, €7 = 2225, €8 = 2425, €9 = 2526.

A graph G = (V, E) can be drawn on the plane. Each element in V' is indicated
by a point. For clarity, such a point is often depicted as a small circle. For an

! The word “graph” was first used in this sense by J. J. Sylvester (James Joseph Sylvester,
1814-1897) in 1878 (Chemistry and algebra. Nature, 1877-8, 17: 284). Sylvester was an English
mathematician, played a leadership role in American mathematics in the later half of the 19th
century as a professor at the Johns Hopkins University and as founder of the American Journal of
Mathematics.
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element e in E, if e = (z,y), we draw a directed line segment or curve joining two
points from z to y; if e = zy, we draw an undirected line segment or curve joining
two points z and y. Such a geometric diagram is called a graphical representation
or geometric representation of the graph, which intuitively shows the configuration
of the graph. Clearly, graphical representations of a graph are not unique, strongly
depending on its drawing.

For instance, the diagrams shown in Figure 1.1 are two graphical representations
of the graph D defined in Example 1.1.1, which show that a graph may have different
graphical representations depending on position of points and drawing of lines. The
diagrams shown in Figure 1.2 are graphical representations of the graph H and the
graph G defined in Example 1.1.2 and Example 1.1.3, respectively.

(a) (b)

Figure 1.1 Two graphical representations of the digraph D

21 Z3 Z5
z2 Za Z6
(a) H (b) G

Figure 1.2 Graphical representations of graphs H and G

It is this representation that gives graph its name and much of its appeal. For
instance, for a graph G = (V, E), the set V is called the vertez-set of G, z € V
called a verter; the set E is called the edge-set of G, e € E called an edge!. Two
vertices linked by an edge e is called end-vertices of the edge e. The end-vertices of
an edge are said to be incident with the edge, and vice versa. Two vertices which

1 Some authors prefer to call a vertex as a point, an edge as a line (see for example [170]) or
call an edge as an arc if the edge is directed (see for example [21]). In some of the older papers we
may find “branch” used for “edge”, and “node” for “vertex”.
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are incident with a common edge are adjacent, as are two edges which are incident
with a common vertex.

If V x V is considered as a set of ordered pairs (z,y), then the graph G is called
a directed graph, or digraph for short. For instance, the two graphs in Example 1.1.1
and Example 1.1.2 are both digraphs. For an edge e of a digraph, sometimes, called
a directed edge or arc, if e = (z,y), then the end-vertices z and y are called the
tail and the head of the edge e, respectively; and the edge e is sometimes called an
out-going edge of x or an in-coming edge of y.

If V x V is considered as a set of unordered pairs zy, then the graph G is called an
undirected graph. For instance, the graph in Example 1.1.3 is an undirected graph.
Edges of an undirected graph are sometimes called undirected edges.

It should be emphasized that a graph is a mathematical structure (V, E), a
geometric diagram is only one of its several representations, and besides, graphical
representations have some restrictions since it is unable to draw a geometric diagram
of a graph if it has a large order or a complex structure.

In addition, in general, for a graph (V, E), its vertex-set V and edge-set E are
not always visible expressions as the above examples, while only give the rules to
form the vertex-set and the edge-set. A simple example is as follows.

Example 1.1.4 Let QF be the family of sets of k distinct elements on n letters.
For given integers n, k and ¢ with n > k > 7 > 0, a graph, denoted by J(n, k,1) and
called the J(n,k,1)-graph, can be defined as (V, E), where the vertex-set V = QF
and the edge-set £ = {XY : X,Y € V,|X NY| = i}. Clearly, the J(n, k,7)-graph is
an undirected graph and |[V| = |Qk| = (}).

From definition, as a mathematical structure, such a graph exists indeed. How-
ever, it is quite difficult to see what appearance of the structure of such a graph is
for general n, k and ¢. For n =5, k = 2 and i = 0, Figure 1.3 shows two graphical
representations of the J(5, 2, 0)-graph, from which its structure is open-and-shut. It

is an undirected graph with 10 vertices and 15 edges.
2 45

35 24

25 34

Figure 1.3 Two drawings of the J(5,2,0)-graph
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For n > 2k, the J(n,k,k — 1)-graph is known as the Johnsom graph, and the
J(n, k,0)-graph is known as the Kneser graph (see [143]). The J(5,2,0)-graph is
often called Petersen graph!, a very useful and interesting graph, which often occurs
in the literature and any textbook on graph theory, that serves as a counterexample
for many problems in graph theory (see [189)]).

Example 1.1.5 The n-dimensional cube or hypercube? Q, is the best-known
class of graphs, also an important topological structure of interconnection networks
(see [360] for details). Note that letters in QF defined in Example 1.1.4 is different
from each other. If letters in QF may be identical, then Q,, can be defined as the
J(2,n,n — 1)-graph. In other words, @, is an undirected graph (V, E), where

V={z12s...0,¢ 236 {0,1}, i=1,2,...,n},

and for two vertices £ = 123 ...2, and ¥y = Y192 - - - Yn,

n
myGE@lei—yd:l.

i=1

Figure 1.4 shows graphical representations of @)1, Q2, @3 and (4, respectively.
Example 1.1.6 The de Bruijn digraphs® B(d,n) = (V, E), where
V={z1za...2,: z; € {0,1,...,d—1}, i=1,2,...,n},
and for z,y €V, if x = z125 ... x,, then

(z,y) e E© y=1x23...200, a€{0,1,...,d—1}.

Figure 1.5 shows graphical representations of the de Bruijn digraphs B(2,n) for
each n = 1,2, 3, respectively.

1 J. Petersen (Julius Petersen, 1839-1910) was a Danish mathematician. His interests in
mathematics were manifold. His famous paper Die Theorie der reguldren Graphen (Acta Mathe-
matica, 1891, 15(1): 193-220) was a fundamental contribution to modern graph theory as we know
it today. In 1898, he presented a small counterexample to Tait’s claimed theorem about hamiltonic-
ity of 3-regular graphs, which is nowadays known as the “Petersen Graph”. Although the graph is
generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by A. B.
Kempe (A memoir on the theory of mathematical form. Philosophical Transactions of the Royal
Society of London, 1886, 177: 1-70). A special issue of Discrete Mathematics (1992, 100(1-3):
9-82) has been dedicated to the 150th birthday of Petersen, in which a very precise biography may
be found.

2 The hypercubes have been much studied in graph theory and computer sciences, see the
survey by Hayes and Mudge (J. P. Hayes and T. N. Mudge. Hypercube supercomputers. Proceedings
of the IEEE, 1989, 77(12): 1829-1841.) and the monograph 360

3 The de Bruin digraph B(2, n) was proposed by de Bruijn (N. G. De Bruijn. A combinatorial
problem. Koninklije Nedderlandse van Wetenshappen Proc., 1946, 49A: 758-764.) and Good (1. J.
Good. Normal recurring decimals. J. London Math. Soc., 1946, 21: 167-169), independently.
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011 plll

Q1 Q2 Qs

Figure 1.5 De Bruin digraphs B(2,1), B(2,2) and B(2,3)

Example 1.1.7 The Kautz digraphs' K(d,n) = (V, E), where
V={zims...25: 3 € {0,1,...,d}, Zor1 # %, 1 =1,2,...,n—1},
and for z,y € V(K (d,n)), if £ = 122 ...Zn, then

(z,y) e E® y=1x223...2p0, a€{0,1,...,d}\{zn}

! The Kautz digraph was proposed by Kautz (W. H. Kautz. Design of optimal interconnec-

tion networks for multiprocessor. Architecture and Design of Digital Computers, Nato Advanced
Summer Institute, 1969, 249-272).
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Figure 1.6 shows graphical representations of the Kautz digraphs K (2, n) for each
n = 1,2, 3, respectively.

K(2,2)

02

Figure 1.6 Kautz digraphs K(2,1), K(2,2) and K(2,3)

From definition of a graph, it is possible that two end-vertices of an edge are
identical since it is possible that (z,z) € V x V for any = € V, such an edge is called
a loop (see Figure 1.1, Figure 1.2 and Figure 1.5), while it is not allowable that
more than one edges link a vertex to another vertex. However, in some practical
applications, it is convenient and allowable that more than one edges link a vertex to
another vertex, these edges are called multi-edges, the corresponding graph is called
a multi-graph. A graph is called to be loopless if it contains no loops. A graph is
called to be simple if it contains no loops and multi-edges edges.

An undirected graph G can be thought of as a particular digraph D, a symmetric
digraph obtained by replacing each edge in G by two oppositely directed edges, called
symmetric edges. Figure 1.7 shows such graphs, where (a) is an undirected graph, (b)
is its symmetric digraph. Thus, to study structural properties of graphs for digraphs

€1

]
ez eg a2 as

3 T4 z3 T4

(a) (b) (<)
Figure 1.7 The symmetric digraph and oriented graph of an undirected graph
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is more general than for undirected graphs. A digraph is said to be asymmetric if it
contains no symmetric edges (see Figure 1.7 (c)).

There are many topics in graph theory that have no relations with direction of
edges. The undirected graph (maybe multi-graph) obtained from a digraph D by
removing the orientation of all edges is called the underlying graph of D. Conversely,
the digraph obtained from an undirected graph G by specifying an orientation of
each edge of G is called an oriented graph of G.

Figure 1.7 shows such graphs, where (a) is the underlying graph of (c) and,
conversely, (c) is an oriented graph of (a).

Let (V, E) be a graph. The number of vertices, v = |V|, is called order of the
graph; the number of edges, € = |E|, is called size of the graph. A graph is said to be
edgeless' if e = 0. An edgeless graph of order v is often denoted by K¢. An edgeless
graph is said to be trivial if v = 1, and all other graphs non-trivial. A graph is finite
if v and ¢ are both finite.

Throughout this book, all graphs are always considered to be finite. The letter
G always denotes a graph, which is directed or undirected according to the context
if it is not specially noted. Sometimes, to emphasize, we use the letter D to denote a
digraph. When just one graph is under discussion, the letters v and e always denote
order and size of the graph, respectively.

The notations |r| and [r] denote the greatest integer not exceeding the real
number r and the smallest integer not less than 7, respectively. The notation

(:) B n(n—l)..égn—k—f-l)

denotes the number of k-combinations of n distinct objects (k < n).
We conclude this section with an example to show that using a graph can make
some statements intuitive, simple and clear.

Example 1.1.8 At a gathering of any siz people, some three of them are either
mutual acquaintances or complete strangers to each other?.

Proof. Use points A, B,C, D, E, F to denote these six people, respectively. Draw
a solid line joining two points if two people have known each other, a dashed line
otherwise. Use G to denote the resulting diagram. We only need to prove that
G certainly contains either a solid triangle or a dashed triangle. Consider a point

! Some authors prefer to use the term “empty graph” rather than “edgeless graph” (see for
example [42,43]). This usage may be found inconvenient in problems involving graph operations,
such as G1 NGz = & (see Section 1.4 of this book), called a null graph sometime to avoid confusion.

2 See: C. W. Bostwick, J. Rainwater and J. D. Baum, E1321, The American Mathematical
Monthly, 1959, 66(2): 141-142.



