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Introduction

Homological algebra is a tool used to prove nonconstructive existence theo-
rems in algebra (and in algebraic topology). It also provides obstructions to
carrying out various kinds of constructions; when the obstructions are zero,
the construction is possible. Finally, it is detailed enough so that actual cal-
culations may be performed in important cases. The following simple ques-
tion (taken from Chapter 3) illustrates these points: Given a subgroup A of an
abelian group B and an integer n, when is nA the intersection of A and nB?
Since the cyclic group Z/n is not flat, this is not always the case. The obstruc-
tion is the group Tor(B/A, Z/n), which explicitly is {x € B/A : nx =0}.

This book intends to paint a portrait of the landscape of homological alge-
bra in broad brushstrokes. In addition to the “canons” of the subject (Ext, Tor,
cohomology of groups, and spectral sequences), the reader will find introduc-
tions to several other subjects: sheaves, lim!, local cohomology, hypercoho-
mology, profinite groups, the classifying space of a group, Affine Lie alge-
bras, the Dold-Kan correspondence with simplicial modules, triple cohomol-
ogy, Hochschild and cyclic homology, and the derived category. The historical
connections with topology, regular local rings, and semisimple Lie algebras
are also described.

After a lengthy gestation period (1890-1940), the birth of homological al-
gebra might be said to have taken place at the beginning of World War II with
the crystallization of the notions of homology and cohomology of a topolog-
ical space. As people (primarily Eilenberg) realized that the same formalism
could be applied to algebraic systems, the subject exploded outward, touching
almost every area of algebra. This phase of development reached maturity in
1956 with the publication of Cartan and Eilenberg’s book [CE] and with the
emergence of the central notions of derived functors, projective modules, and
injective modules. '
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Until 1970, almost every mathematician learned the subject from Cartan-
Eilenberg [CE]. The canonical list of subjects (Ext, Tor, etc.) came from this
book. As the subject gained in popularity, other books gradually appeared on
the subject: MacLane’s 1963 book [MacH], Hilton and Stammbach’s 1971
book [HS], Rotman’s 1970 notes, later expanded into the book [Rot], and
Bourbaki’s 1980 monograph [BX] come to mind. All these books covered the
canonical list of subjects, but each had its own special emphasis.

In the meantime, homological algebra continued to evolve. In the period
1955-1975, the subject received another major impetus, borrowing topolog-
ical ideas. The Dold-Kan correspondence allowed the introduction of simpli-
cial methods, lim! appeared in the cohomology of classifying spaces, spec-
tral sequences assumed a central role in calculations, sheaf cohomology be-
came part of the foundations of algebraic geometry, and the derived category
.emerged as the formal analogue of the topologists’ homotopy category.

Largely due to the influence of Grothendieck, homological algebra became
increasingly dependent on the central notions of abelian category and derived
functor. The cohomology of sheaves, the Grothendieck spectral sequence, lo-
cal cohomology, and the derived category all owe their existence to these no-
tions. Other topics, such as Galois cohomology, were profoundly influenced.

Unfortunately, many of these later developments are not easily found by
students needing homological algebra as a tool. The effect is a technological

barrier between casual users and experts at homological algebra. This book is
an attempt to break down that barrier by providing an introduction to homo-
logical algebra as it exists today.

This book is aimed at a second- or third-year graduate student. Based on the
notes from a course I taught at Rutgers University in 1985, parts of it were
used in 1990-92 in courses taught at Rutgers and Queens’ University (the
latter by L. Roberts). After Chapter 2, the teacher may pick and choose topics
according to interest and time constraints (as was done in the above courses).

As prerequisites, I have assumed only an introductory graduate algebra
course, based on a text such as Jacobson’s Basic Algebra 1 [BAI]. This means
some familiarity with the basic notions of category theory (category, functor,
natural transformation), a working knowledge of the category Ab of abelian
groups, and some familiarity with the category R-mod (resp. mod-R) of left
(resp. right) modules over an associative ring R. The notions of abelian cat-
egory (section 1.2), adjoint functor (section 2.3) and limits (section 2.6) are
introduced in the text as they arise, and all the category theory introduced in
this book is summarized in the Appendix. Several of the motivating exam-
ples assume an introductory graduate course in algebraic topology but may
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be skipped over by the reader willing to accept that such a motivation exists.
An exception is the last section (section 10.9), which requires some familiarity
with point-set topology.

Many of the modern applications of homological algebra are to algebraic
geometry. Inasmuch as I have not assumed any familiarity with schemes or
algebraic geometry, the reader will find a discussion of sheaves of abelian
groups, but no mention of sheaves of Ox-modules. To include it would have
destroyed the flow of the subject; the interested reader may find this material
in [Hart].

Chapter 1 introduces chain complexes and the basic operations one can
make on them. We follow the indexing and sign conventions of Bourbaki
[BX], except that we introduce two total complexes for a double complex: the
algebraists’ direct sum total complex and the topologists’ product total com-
plex. We also generalize complexes to abelian categories in order to facilitate
the presentation of Chapter 2, and also in order to accommodate chain com-
plexes of sheaves.

Chapter 2 introduces derived functors via projective modules, injective
modules, and 3-functors, following [Tohoku]. In addition to Tor and Ext, this
allows us to define sheaf cohomology (section 2.5). Our use of the acyclic
assembly lemma in section 2.7 to balance Tor and Ext is new.

Chapter 3 covers the canonical material on Tor and Ext. In addition, we dis-
cuss the derived functor lim! of the inverse limit of modules (section 3.5), the
Kiinneth Formulas (section 3.6), and their applications to algebraic topology.

Chapter 4 covers the basic homological developments in ring theory. Our
discussion of global dimension (leading to commutative regular local rings)
follows [KapCR] and [Rot]. Our material on Koszul complexes follows [BX],
and of course the material on local cohomology is distilled from [GLC].

Spectral sequences are introduced in Chapter 5, early enough to be able to
utilize this fundamental tool in the rest of the book. (A common problem with
learning homological algebra from other textbooks is that spectral sequences
are often ignored until the last chapter and so are not used in the textbook
itself.) Our basic construction follows [CE]. The motivational section 5.3 on
the Leray-Serre spectral sequence in topology follows [MacH] very closely.
(I first learned about spectral sequences from discussions with MacLane and
this section of his book.) Our discussion of convergence covers several results
not in the standard literature but widely used by topologists, and is based on
unpublished notes of M. Boardman.

In Chapter 6 we finally get around to the homology and cohomology of
groups. The material in this chapter is taken from [Brown], [MacH], and [Rot].
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We use the Lyndon/Hochschild-Serre spectral sequence to do calculations in
section 6.8, and introduce the classifying space BG in section 6.10. The ma-
terial on universal central extensions (section 6.9) is based on [Milnor] and
[Suz]. The material on Galois cohomology (and the Brauer group) comes from
[BAII], [Serre], and [Shatz].

Chapter 7 concerns the homology and cohomology of Lie algebras. As
Lie algebras aren’t part of our prerequisites, the first few sections review the
subject, following. [JLA] and [Humph]. Most of our material comes from the
1948 Chevalley-Eilenberg paper [ChE] and from [CE]}, although the emphasis,
and our discussion of universal central extensions and Affine Lie algebras,
comes from discussions with R. Wilson and [Wil].

Chapter 8 introduces simplicial methods, which have long been a vital part
of the homology toolkit of algebraic topologists. The key result is the Dold-
Kan theorem, which identifies simplicial modules and positive chain com-
plexes of modules. Applied to adjoint functors, simplicial methods give rise
to a host of canonical resolutions (section 8.6), such as the bar resolution, the
Godement resolution of a sheaf [Gode], and the triple cohomology resolutions
[BB]. Our discussion in section 8.7 of relative Tor and Ext groups parallels
that of [MacH], and our short foray into André-Quillen homology comes from
[Q] and [Barr].

Chapter 9 discusses Hochschild and cyclic homology of k-algebras. Al-
though part of the discussion is ancient and is taken from [MacH], most is new.
The material on differentials and smooth algebras comes from [EGA, IV] and
[Mat]. The development of cyclic homology is rather new, and textbooks on it
([Loday],[HK]) are just now appearing. Much of this material is based on the
articles [LQ], [Connes], and [Gw].

Chapter 10 is devoted to the derived category of an abelian category. The*
development here is based upon [Verd] and [HartRD]. The material on the
topologists’ stable homotopy in section 10.9 is based on [A] and [LMS].

Paris, February 1993
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1

Chain Complexes

1.1 Complexes of R-Modules

Homological algebra is a tool used in several branches of mathematics: alge-
braic topology, group theory, commutative ring theory, and algebraic geometry
come to mind. It arose in the late 1800s in the following manner. Let f and g
be matrices whose product is zero. If g - v = 0 for some column vector v, say,
of length n, we cannot always write v = f - u. This failure is measured by the
defect

d =n —rank(f) — rank(g).
In modern language, f and g represent linear maps

0 e ¥ s

with gf =0, and d is the dimension of the homology module

H =ker(g)/f(U).

In the first part of this century, Poincaré and other algebraic topologists
utilized these concepts in their attempts to describe “n-dimensional holes” in
simplicial complexes. Gradually people noticed that “vector space” could be
replaced by “R-module” for any ring R.

This being said, we fix an associative ring R and begin again in the category
mod-R of right R-modules. Given an R-module homomorphism f: A — B,
one is immediately led to study the kernel ker(f), cokernel coker(f), and
image im( f) of f. Given another map g: B — C, we can form the sequence

(*) £y grrBiop

1



2 Chain Complexes

We say that such a sequence is exact (at B) if ker(g) = im(f). This implies
in particular that the composite gf: A — C is zero, and finally brings our
attention to sequences (*) such that gf = 0.

Definition 1.1.1 A chain complex C  of R-modules is a family {Cp},ez of
R-modules, together with R-module maps d = d,,: C,, = C,—; such that each
composite d od: C, = C,—3 is zero. The maps d, are called the differentials
of C.. The kernel of d, is the module of n-cycles of C., denoted Z,, = Z,(C).
The image of dy+1: Cny1 = C, is the module of n-boundaries of C_, denoted
B, = B,(C)). Because d o d = 0, we have

0SB CZnCCy

for all n. The n*" homology module of C. is the subquotient H,(C)) = Z,/B,
of C,. Because the dot in C_ is annoying, we will often write C for C..

Exercise 1.1.1 Set C, = 2/8 forn>0and C, =0 for n <0; for n >0
let d, send x(mod8) to 4x(mod 8). Show that C_is a chain complex of
Z /8—modules and compute its homology modules.

There is a category Ch(med-R) of chain complexes of (right) R-modules.
The objects are, of course, chain complexes. A morphism u:C.— D, is a
chain complex map, that is, a family of R-module homomorphisms u,: C, —
D, commuting with d in the sense that u,_d, = d,—1u,. That is, such that
the following diagram commutes

d d d
¢+ = Cu4l — Cy — Gy —

Lu Lu Lu

d d d
¢ —> Dn+l w—— Dn —— D"_l — e

Exercise 1.1.2 Show that a morphism u: C. — D, of chain complexes sends
boundaries to boundaries and cycles to cycles, hence maps H,(C) — H,(D).
Prove that each H, is a functor from Ch(mod-R) to mod—-R.

Exercise 1.1.3 (Split cxact sequences of vector spaces) Choose vector spaces
{Bns Hp)nez over a field, and set C, = B, & H, ® B,—). Show that the
projection-inclusions C, — B, C Cy—) make {C,} into a chain complex,
and that every chain complex of vector spaces is isomorphic to a complex of
this form.
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Exercise 1.1.4 Show that {Homg(A, C,)} forms a chain complex of abelian
groups for every R-module A and every R-module chain complex C. Taking
A = Z,, show that if H,(Homg(Z,, C)) =0, then H,(C) = 0. Is the converse
true?

Definition 1.1.2 A morphism C. — D. of chain complexes is called a quasi-
isomorphism (Bourbaki uses homologism) if the maps H,(C.) — Hp(D.) are
all isomorphisms.

Exercise 1.1.5 Show that the following are equivalent for every C . :

1. C.is exact, that is, exact at every C,.

2. C.isacyclic, that is, H,(C) = 0 for all n.

3. The map 0 — C. is a quasi-isomorphism, where “0” is the complex of
zero modules and zero maps.

The following variant notation is obtained by reindexing with superscripts:
C" = C_,. A cochain complex C- of R-modules is a family {C"} of R-
modules, together with maps d": C"* — C"*! such that d od = 0. Z"(C’) =
ker(d") is the module of n-cocycles, B"(C*) =im(d"~!) € C" is the mod-
ule of n-coboundaries, and the subquotient H"(C-) = Z" /B" of C" is the n'h
cohomology module of C-. Morphisms and quasi-isomorphisms of cochain
complexes are defined exactly as for chain complexes.

A chain complex C. is called bounded if almost all the C, are zero; if
Cp =0 unless a < n < b, we say that the complex has amplitude in [a, b]. A
complex C. is bounded above (resp. bounded below) if there is a bound b (resp.
a) such that C, =0 for all n > b (resp. n < a). The bounded (resp. bounded
above, resp. bounded below) chain complexes form full subcategories of Ch
= Ch(R-mod) that are denoted Chp, Ch_ and Chy, respectively. The sub-
category Chs of non-negative complexes C. (C, = 0 for all n < 0) will be

_important in Chapter 8.

Similarly, a cochain complex C- is called bounded above if the chain com-
plex C (C, = C™") is bounded below, that is, if C" = 0 for all large n; C-
is bounded below if C is bounded above, and bounded if C.is bounded.
The categories of bounded (resp. bounded above, resp. bounded below, resp.
non-negative) cochain complexes are denoted Ch®, Ch~, Ch*, and Ch=?,
respectively.

Exercise 1.1.6 (Homology of a graph) Let I be a finite graph with V vertices
(vy,--+,vy)and E edges (ey, - - -, eg). If we orient the edges, we can form the
incidence matrix of the graph. This is a V x E matrix whose (ij) entry is +1
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if the edge e; starts at v;, —1 if e; ends at v;, and 0 otherwise. Let Cp be the
free R—module on the vertices, C the free R—module on the edges, C, =0
if n#0, 1, and d: C) — Cj be the incidence matrix. If I" is connected (i.e.,
we can get from vp to every other vertex by tracing a path with edges), show
that Ho(C) and H)(C) are free R—modules of dimensions 1 and V — E — 1
respectively. (The number V — E — 1 is the number of circuits of the graph.)
Hint: Choose basis {vg, v1 — vg, - - -, vy — vg} for Cp, and use a path from vg
to v; to find an element of C) mapping to v; — vg.

Application 1.1.3 (Simplicial homology) Here is a topological application
we shall discuss more in Chapter 8. Let K be a geometric simplicial complex,
such as a triangulated polyhedron, and let K; (0 < k < n) denote the set of
k-dimensional simplices of K. Each k-simplex has k + 1 faces, which are
ordered if the set K¢ of vertices is ordered (do so!), so we obtain k + 1 set
maps 9;: Ky = Kx—1(0 <i < k). The simplicial chain complex of K with
coefficients in R is the chain complex C,, formed as follows. Let Cy be the free
R-module on the set Ki; set Cx = 0 unless 0 < k < n. The set maps 9; yield
k 4+ 1 module maps Cy — Ci-1, which we also call 9;; their alternating sum
di= Z(—l)'a,- is the map Cy — Ci_) in the chain complex C.. To see that C,
is a chain complex, we need to prove the algebraic assertion thatd od = 0.
This translates into the geometric fact that each (k — 2)-dimensional simplex
contained in a fixed k-simplex o of K lies on exactly two faces of o. The
homology of the chain complex C. is called the simplicial homology of K with
coefficients in R. This simplicial approach to homology was used in the first
part of this century, before the advent of singular homology.

Exercise 1.1.7 (Tetrahedron) The tetrahedron T is a surface with 4 ver-
tices, 6 edges, and 4 2-dimensional faces. Thus its homology is the homol-
ogy of a chain complex 0 - R* - R® — R* — 0. Write down the matrices
in this complex and verify computationally that H,(T) = Ho(T) = R and
H\(T)=0.

Application 1.1.4 (Singular homology) Let X be a topological space, and
let Sy = Sk(X) be the free R-module on the set of continuous maps from
the standard k-simplex Ay to X. Restriction to the i** face of Ay (0 <i <k)
transforms a map Ay — X into a map A¢—; — X, and induces an R-module
homomorphism d; from Sk to Sx—;. The alternating sumsd = ) _(— 1)!9; (from
Sk to Sk—1) assemble to form a chain complex

d d
c— S — 5 — S — 0,



