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Preface

This book aims to bring together continuum elasticity theory, electronic
structure and the concept of fractals as applied to roughness and toughness of
metals.

Of course, a major contribution to fracture was made by Griffith, in which,
though incomplete for reasons that are now largely understood, he derived an
expression for the limiting strength of a material. This involved intimately
the surface energy, which subsequently, at least in a simple metal like Al with
s and p electrons, has been related to the energy of formation of a vacancy.
However, a tremendous step forward came with the concept of a dislocation.

It was shown that if a limited area of one plane slips by one atomic distance
over the neighbouring plane, the boundary of this area is a closed loop of dis-
location. Once this loop is formed, glide can propagate across the plane by the
spreading of the area, which is a motion of the dislocation line across its glide
plane. General interest in dislocation theory was aroused by its success in pro-
viding atomistic theories for plastic deformation and crystal growth. Progress
has been made in this field for more than one decade on the treatment of elas-
tic anisotropy and dislocation mobility. For more than two decades, interests
have concentrated on deepening our understanding of the structure and role
of the dislocation core the behaviour of a pile-up of dislocations (simulating
a crack). Interatomic forces (electronic structure) play a decisive role in the
structure of the dislocation core and even in fracture. In particular, the tem-
perature dependence of fracture toughness of materials has a close relationship
to the interatomic forces. Molecular dynamics has been applied to understand
the dislocation motion and the emission of dislocations at the crack tip under
loading. Dynamics of crack propagation has become an area of considerable
current interest for theoretical physicists and material scientists.

As to electronic structure, electron density theory based on a one-body po-
tential V(r) including electron-electron exchange and correlation interactions
has transformed what can be done on electronic structure of both perfect and
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defective crystals. Nevertheless, it is still important to subsume ideas involved
there into interatomic force fields, which can then be used to study extended
defects such as surfaces, grain boundaries, dislocations and cracks. There is
still, however, much to do in understanding, in metals, the role of collective
effects (including plasmons) in determining mechanical properties and tribol-
ogy of conducting materials. If our book proves to make a contribution to
furthering the progress in relating and enriching ideas from continuum theory,
from electronic structure, and from concepts of fractal structure, then that will
be more than ample justification for the effort involved in the present project.

We are conscious that in some areas embraced in our book, there is rapid
movement at the time of writing. If authors in electron theory or in very
practical aspects of materials science and engineering see where we ought to do
better, we shall count it a privilege if they write to us with positive suggestions
for improvement.

Over a decade or more, diverse scientists have recognized that many of
the structures common in their experiments have a special kind of geometrical
complexity. Mandelbrot in his pioneering work introduced the concept of frac-
tals and used the idea of a fractal dimension which often is not an integer to
characterize the complex structure quantitatively. Fractals may be considered
as systems which obey the law of self-similarity, or are self-affine.

Since Mandelbrot et al. (1984) showed that fractured surfaces are fractals
in nature and that the fractal dimensions of the surfaces correlate well with the
toughness of the material, many authors have found that the fractal dimension
depends on the fracture properties of materials, but the values of it seem in
a narrow range for measurements with a resolution down to the micron scale.
This has led to much discussion on the universality and specificity of the fractal
dimension of fractured surfaces. However, the roughness index (or local fractal
dimension) is found to display wide differences depending on materials on a
small length scale by means of scanning electron microscopy (SEM). Another
problem is that the negative correlation of the fractal dimension of fractured
surfaces with toughness of ductile materials is quite difficult to understand.
These basic problems remain open at the time of writing and much remains to
be done.

We could not end this Preface without acknowledging our indebtedness to
other workers. C. W. Lung wishes to thank Professor P. L. Zhang for leading
him into active research in materials physics, Professors T. S. Ge(Ké) and K. X.
Guo for their advice, collaboration and much practical support, and Professors
H. Wu, X. Li, J. Z. Gao and C. X. Shi for their continuous encouragement.
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Chapter 1

Background and Some Concepts

Introduction

We assume knowledge of general solid state physics as in Rosenberg (1992).
However, we shall begin by briefly summarizing a few concepts” that are basic
to an understanding of later chapters below.

1.1. Elastic and Plastic Regimes

It is helpful to classify the discussion of mechanical properties by defining two
regimes (1) elastic and (ii) plastic.

1.1.1. Elastic Deformation

The mechanical properties of materials are of vital importance in determining
their fabrication and practical applications. Initially as a load is applied on
the material, the nominal stress is defined as the load divided by the original
cross section area, and the nominal strain as the extension divided by the
original length. As the stress is increased, the strain increases uniformly and
the deformation produced is completely reversible. This is so-called the elastic
region. The stress and resulting strain are proportional to-one another and
obey Hooke’s law.

From an atomistic point of view, if we pull two atoms apart or push them
together by a force, the atoms can find a new equilibrium position in which the
atomic and applied forces are balanced. The force in the bond is a function of
the displacement. The deformation of the bond being reversible means that,
when the displacement returns to the initial value, so does the force return

*Readers may skip this Chapter if they are familiar with this background material.
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simultaneously to its corresponding value. The bulk elastic behaviour of large
solid bodies is the aggregate effect of the individual deformations of the bonds
which are the building blocks.

When the applied forces are sufficiently small, the elastic displacement is
always proportional to force. This is Hooke's law. The elastic constant is
a key parameter, to express the coefficient of proportionality between force
and displacement. When the applied forces are large, the elastic displacement
deviates from Hooke's law. The relation between force and displacement is
nonlinear. This is then called nonlinear elasticity.

1.1.2. Atomic Forces and FElastic Properties

Taking NaCl type ionic crystals as an example, Cottrell (1964a) discussed the
interaction energy of a pair of univalent ions at a distance r as
e? B
U(r)—:t7+r—s (1.1.1)
where, s = 9, and where + and — refer to like and unlike ions respectively.
Having summed the repulsive and attractive interactions with nearest neigh-
bours, the total interaction energy of an ion can be written as

B

e2
U,=—A— +6— (1.1.2)
T rd

where A is called the Madelung constant, equal to 1.7476 for the NaCl type

crystals. At the equilibrium condition, %—} =0, at r = 9. Thus,

Ae?ri!
6s

U, = _AT& [1 - (%) (57_9)—1} . (1.1.4)

This is the work required to dissociate the crystal into 2N separate ions (N
positive and N negative).
The elastic constant F,

1 82U, —1)Ae?
SOOI S

where % is the energy per each nearest-neighbour bond, and u = r — rg, is

the elastic displacement.

B (1.1.3)

and




