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Preface to the Second Edition

In view of recent development in perturbation theory, supplementary
notes and a supplementary bibliography are added at the end of the new
edition. Little change has been made in the text except that the para-
graphs V-§ 4.5, VI-§ 4.3, and VIII-§ 1.4 have been completely rewritten,
and a number of minor errors, mostly typographical, have been corrected.
The author would like to thank many readers who brought the errors to
his attention.

Due to these changes, some theorems, lemmas, and formulas of the
first edition are missing from the new edition while new ones are added.
The new ones have numbers different from those attached to the old
ones which they may have replaced.

Despite considerable expansion, the bibliography is not intended to
be complete.

Berkeley, April 1976 Tosio Kato

Preface to the First Edition

This book is intended to give a systematic presentation of perturba-
tion theory for linear operators. It is hoped that the book will be useful
to students as well as to mature scientists, both in mathematics and in
the physical sciences.

Perturbation theory for linear operators is a collection of diversified
results in the spectral theory of linear operators, unified more or less
loosely by their common concern with the behavior of spectral properties
when the operators undergo a small change. Since its creation by Ray-
LEIGH and SCHRODINGER, the theory has occupied an important place in
applied mathematics; during the last decades, it has grown into a
mathematical discipline with its own interest. The book aims at a mathe-
matical treatment of the subject, with due consideration of applications.

The mathematical foundations of the theory belong to functional
analysis. But since the book is partly intended for physical scientists,
who might lack training in functional analysis, not even the elements of
that subject are presupposed. The reader is assumed to have only a basic
knowledge of linear algebra and real and complex analysis. The necessary
tools in functional analysis, which are restricted to the most elementary
part of the subject, are developed in the text as the need for them arises
(Chapters I, IIT and parts of Chapters V, VI).

An introduction, containing a brief historical account of the theory,
precedes the main exposition. There are ten chapters, each prefaced by a
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summary. Chapters are divided into sections, and sections into para-
graphs. I-§ 2.3, for example, means paragraph three of section two of
chapter one; it is simply written § 2.3 when referred to within the same
chapter and par. 3 when referred to within the same section. Theorems,
Corollaries, Lemmas, Remarks, Problems, and Examples are numbered
in one list within each section: Theorem 2.1, Corollary 2.2, Lemma 2.3,
etc. Lemma I1-2.3 means Lemma 2.3 of chapter one, and it is referred
to simply as Lemma 2.3 within the same chapter. Formulas are numbered
consecutively within each section; I-(2.3) means the third formula of
section two of chapter one, and it is referred to as (2.3) within the same
chapter. Some of the problems are disguised theorems, and are quoted
in later parts of the book.

Numbers in [ ] refer to the first part of the bibliography containing
articles, and those in { ) to the second part containing books and mono-
graphs.

There are a subject index, an author index and a notation index at the
end of the book.

The book was begun when I was at the University of Tokyo and
completed at the University of California. The preparation of the book
has been facilitated by various financial aids which enabled me to pursue
research at home and other institutions. For these aids I am grateful
to the following agencies: the Ministry of Education, Japan; Com-
missariat Général du Plan, France; National Science Foundation,
Atomic Energy Commission, Army Office of Ordnance Research, Office
of Naval Research, and Air Force Office of Scientific Research, U.S.A.

I am indebted to a great many friends for their suggestions during
the long period of writing the book. In particular I express my hearty
thanks to Professors C. CLARK, K. O. FriEDRICHS, H. FujITa, S. GoLD-
BERG, E. HiLLE, T. IKEBE, S. KAKUTANI, S. T. KuropA, G. NEUBAUER,
R.S. PHILLIPS, J. and O. Topp, F. WoLF, and K. YosIipA. I am especially
obliged to Professor R. C. RIDDELL, who took the pains of going through
the whole manuscript and correcting innumerable errors, mathematical
as well as linguistic. I am indebted to Dr. J. HOWLAND, Dr. F. MCGRATH,
Dr. A. McIntosH, and Mr. S.-C. LiN for helping me in proofreading
various parts of the book. I wish to thank Professor F. K. ScHMIDT who
suggested that I write the book and whose constant encouragement
brought about the completion of the book. Last but not least my
gratitudes go to my wife, MizuE, for the tedious work of typewriting
the manuscript.

Berkeley Tos1o KATo
August, 1966



Introduction

Throughout this book, “perturbation theory’’ means “‘perturbation
theory for linear operators”. There are other disciplines in mathematics
called perturbation theory, such as the ones in analytical dynamics
(celestial mechanics) and in nonlinear oscillation theory. All of them
are based on the idea of studying a system deviating slightly from a
simple ideal system for which the complete solution of the problem
under consideration is known; but the problems they treat and the tools
they use are quite different. The theory for linear operators as developed
below is essentially independent of other perturbation theories.

Perturbation theory was created by RAYLEIGH and SCHRODINGER
(cf. Sz.-NAGY [1]). RAYLEIGH gave a formula for computing the natural
frequencies and modes of a vibrating system deviating slightly from a
simpler system which admits a complete determination of the frequencies
and modes (see RAYLEIGH (1), §§ 90, 91). Mathematically speaking,
the method is equivalent to an approximate solution of the eigenvalue
problem for a linear operator slightly different from a simpler operator
for which the problem is completely solved. SCHRODINGER developed a
similar method, with more generality and systematization, for the
eigenvalue problems that appear in quantum mechanics (see SCHRODIN-
GER (1), [1]).

These pioneering works were, however, quite formal and mathe-
matically incomplete. It was tacitly assumed that the eigenvalues and
eigenvectors (or eigenfunctions) admit series expansions in the small
parameter that measures the deviation of the “perturbed” operator
from the ‘“unperturbed” one; no attempts were made to prove that the
series converge.

It was in a series of papers by RELLICH that the question of con-
vergence was finally settled (see ReLLicH [1]—[5]; there were some
attempts at the convergence proof prior to RELLICH, but they were not
conclusive; see e. g. WiLsoN [1]). The basic results of RELLICH, which
will be described in greater detail in Chapters II and VII, may bestated
in the following way. Let T (x) be a bounded selfadjoint operator in a
Hilbert space H, depending on a real parameter x as a convergent power
series

(1) Tw)=T+xTO+3T® 4 -+
Suppose that the unperturbed operator T = T (0) has an isolated eigen-

value A (isolated from the rest of the spectrum) with a finite multi-
plicity m. Then T (x) has exactly m eigenvalues u;(x), j=1, ..., m
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(multiple eigenvalues counted repeatedly) in the neighborhood of 1 for
sufficiently small |x|, and these eigenvalues can be expanded into con-
vergent series

(2) ps) = A+ 2p®P +o2p®+ -+, j=1,...,m.

The associated eigenvectors @;(x) of T (x) can also be chosen as con-
vergent series

(3) @) =@ +xgP+xtgP+ -, j=1...m,
satisfying the orthonormality conditions
4) (@3 (%), @ (%)) = 8;a ,

where the @; form an orthonormal family of eigenvectors of T for the
eigenvalue A.

These results are exactly what were anticipated by RAYLEIGH,
SCHRODINGER and other authors, but to prove them is by no means
simple. Even in the case in which H is finite-dimensional, so that the
eigenvalue problem can be dealt with algebraically, the proof is not at
all trivial. In this case it is obvious that the u;(x) are branches of al-
gebroidal functions of x, but the possibility that they have a branch
point at x = 0 can be eliminated only by using the selfadjointness of
T (x). In fact, the eigenvalues of a selfadjoint operator are real, but a
function which is a power series in some fractional power x'/? of x cannot
be real for both positive and negative values of », unless the series reduces
to a power series in x. To prove the existence of eigenvectors satisfying
(3) and (4) is much less simple and requires a deeper analysis.

Actually RELLICH considered a more general case in which T (x) is an
unbounded operator; then the series (1) requires new interpretations,
which form a substantial part of the theory. Many other problems related
to the one above were investigated by RELLICH, such as estimates for the
convergence radii, error estimates, simultaneous consideration of all the
eigenvalues and eigenvectors and the ensuing question of uniformity, and
non-analytic perturbations.

Rellich’s fundamental work stimulated further studies on similar
and related problems in the theory of linear operators. One new develop-
ment was the creation by FRIEDRICHS of the perturbation theory of
continuous spectra (see FRIEDRICHS [2]), which proved extremely
important in scattering theory and in quantum field theory. Here an
entirely new method had to be developed, for the continuous spectrum
is quite different in character from the discrete spectrum. The main
problem dealt with in Friedrichs’s theory is the similarity of T (x) to T,
that is, the existence of a non-singular operator W (x) such that T (x)
= W(x) TW (%)
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The original results of RELLICH on the perturbation of isolated
eigenvalues were also generalized. It was found that the analytic theory
gains in generality as well as in simplicity by allowing the parameter »
to be complex, a natural idea when analyticity is involved. However,
one must then abandon the assumption that T (x) is selfadjoint for all x,
for an operator T (x) depending on x analytically cannot in general be
selfadjoint for all x of a complex domain, though it may be selfadjoint
for all real x, say. This leads to the formulation of results for non-self-
adjoint operators and for operators in Banach spaces, in which the use of
complex function theory prevails (Sz.-Nacy [2], WoLF [1], T. KaTo [6]).
It turns out that the basic results of RELLICH for selfadjoint operators
follow from the general theory in a simple way.

On the other hand, it was recognized (TiTcHMARSH [1], [2], T. KATO
[1]) that there are cases in which the formal power series like (2) or (3)
diverge or even have only a finite number of significant terms, and yet
approximate the quantities u;(%) or @;(») in the sense of asymptotic
expansion. Many examples, previously intractable, were found to lie
within the sway of the resulting asymptotic theory, which is closely
related to the singular perturbation theory in differential equations.

Other non-analytic developments led to the perturbation theory of
spectra in general and to stability theorems for various spectral properties
of operators, one of the culminating results being the index theorem
(see GoHBERG and KREIN [1]).

Meanwhile, perturbation theory for one-parameter semigroups of
operators was developed by HILLE and PHILLIPS (see PHiLLIPS [1],
HirLe and PHiriips [1]). It is a generalization of, as well as a mathe-
matical foundation for, the so-called time-dependent perturbation theory
familiar in quantum mechanics. It is also related to time-dependent
scattering theory, which is in turn closely connected with the perturba-
tion of continuous spectra. Scattering theory is one of the subjects in
perturbation theory most actively studied at present.

It is evident from this brief review that perturbation theory is not
a sharply-defined discipline. While it incorporates a good deal of the
spectral theory of operators, it is a body of knowledge unified more by
its method of approach than by any clear-cut demarcation of its province.
The underpinnings of the theory lie in linear functional analysis, and an
appreciable part of the volume is devoted to supplying them. The
subjects mentioned above, together with some others, occupy the
remainder.
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