©

- Pearson
-3
L -
- -~ .
ey -
\ . & . i
S & |

3 »
4 =
& gt Vo
5 % ' v ¥
ks : il ¥
g = .)

Javatz DA

Zl: BEiFshin 6
(108 - 2370)

[2£] Cay S. Horstmann #

Core Java

Volume | —Fundamentals, Tenth Edition

B L 1S i AL

POSTS & TELECOM PRESS

HrlE CAE AR A

®

Javatz O A
&l Bl xR &

(% 100K - 23R)

[E] Cay S. Horstmann =

Core Java

Volume |—Fundamentals, Tenth Edition

A BB R #E

it =

Hs

Chapter 10: Graphics Programming /B R BE%RwZ 537
10.1 Introducing Swing / Swing &4 538

10.2 Creating a Frame / fJ#HEZ 543

10.3 Positioning a Frame / BCEHESLH) ik /R {8 546
10.3.1 Frame Properties / HE4EJ& 1 549

10.3.2 Determining a Good Frame Size / #iiE &G fIHESE K/ 549
104 Displaying Information in a Component / fEZH{FH i /R{EE 554

10.5 Working with 2D Shapes / 4b# 2D EJE 560

10.6 Using Color / i &5) 569

10.7 Using Special Fonts for Text / {#f FIFF#RA AT 573

10.8 Displaying Images / SR E 582
Chapter 11: Event Handling /342028 587
11.1 Basics of Event Handling / S44-4bF Al 587

11.1.1 Example: Handling a Button Click /
Al AP R A 591

11.1.2 Specifying Listeners Concisely / BT # IR % 595
11.1.3 Example: Changing the Look-and-Feel / 7=~f7l: {&40W/& 598

11.1.4 Adapter Classes / &L #% 603
11.2 Actions / Zh{E 607
11.3 Mouse Events / FEAnEH 616
114 The AWT Event Hierarchy / AWT 21K 624

11.4.1 Semantic and Low-Level Events / i& X 5EKZ3H{F 626
Chapter 12: User Interface Components with Swing / Swing FAFPFRELE 629

12.1 Swing and the Model-View-Controller Design Pattern /
Swing L8RP -] & R 630
12.1.1 Design Patterns / #¢it 45 630

B3x

12.2

12.3

124

126

12.6

12.1.2 The Model-View-Controller Pattern /

A AR 40 P -) A A 632
12.1.3 A Model-View-Controller Analysis of Swing Buttons /

Swing $&EH AR A -4 P-4 11 25 43 A 636
Introduction to Layout Management / i Joy & # @i 41~ 638
12.2.1 Border Layout / AHEA 5 641
12.2.2 Grid Layout / PG &) 644
Text Input / SLAHIA 648
12.3.1 Text Fields / CAKHE 649
12.3.2 Labels and Labeling Components / #r% S5r2E4F 651
12.3.3 Password Fields / Zf5HE 652
12.3.4 Text Areas / SCA[XIR 653
12.3.5 Scroll Panes / &z %% 654
Choice Components / A 657
12.4.1 Checkboxes / & iEHE 657
12.42 Radio Buttons / #.iE$% 4 660
1243 Borders / WHE 664
1244 Combo Boxes / HEHE 668
12.4.5 Sliders / 1##h% 672
Menus / SEH 678
125.1 Menu Building / A 679
12.5.2 Icons in Menu Items / &I (] & 4 682
12.5.3 Checkbox and Radio Button Menu Items /

SRS HE I B 2 BH 558 5. T 683
1254 Pop-Up Menus / #iH3EH 684
12.5.,5 Keyboard Mnemonics and Accelerators /

A BNCAT SR 686
12.5.6 Enabling and Disabling Menu Items / & FHAIEEFHSERATN 689
12.5.7 Toolbars / T.EA= 694
12.5.8 Tooltips / T HHER 696

Sophisticated Layout Management / & A4 Joy 2 699

12.6.1
12.6.2
12.6.3
12.6.4
12.6.5

The Grid Bag Layout / F#&A7 5 & #

Group Layout / 414 J&

Using No Layout Manager / AN F A7 Jm) B 2148
Custom Layout Managers / 5 fill 4 J& & 2 25
Traversal Order / 73 i} 7

12.7 Dialog Boxes / X {FHE

12.7.1
12.7.2
12.7.3
12.7.4
12.7.5

Option Dialogs / &I 5 HE
Creating Dialogs / fill&E X} 15 HE
Data Exchange / ##f % #t
File Dialogs / M FXTifHE
Color Choosers / PE#: 25

12.8 Troubleshooting GUI Programs / GUI 2/ [a] &€ 37

12.8.1
12.8.2

Debugging Tips / i ik#75
Letting the AWT Robot Do the Work /
fETAEAE 4 AWT Robot

Chapter 13: Deploying Java Applications / Z& Java NE#ER

13.1 JAR Files / JAR 3 ff

13.2

13.3
13.4

13.1.1
13.1.2
13.1.3
13.14
13.1.5

Creating JARfiles / il JAR S {

The Manifest / ¥ 5.3

Executable JAR Files / A $i4T] JAR L1
Resources / %

Sealing / 3}/

Storage of Application Preferences / N Fiflwtiffa & 1 77

13.2.1
13.2.2

Property Maps / J& Pt
The Preferences API / Properties API

Service Loaders / JR55 M 25
Applets / Applet

13.4.1
13.4.2

A Simple Applet / —ME [Applet
The applet HTML Tag and Its Attributes /
applet HTML Axic K & 4

701
713
723
724

729
730
731
741
746
752
764
770

770

774

779

780
780
781
782
783
787
788
788
794
800
802
803

808

HE
13.4.3 Use of Parameters to Pass Information to Applets /
T Z40n Applet #5145 & 810
13.4.4 Accessing Image and Audio Files / V] E FESicft 816
134.5 The Applet Context / Applet [X 818
13.4.6 Inter-Applet Communication / Applet [H])i {5 818
13.4.7 Displaying Items in the Browser / {ENI'iasHE/REE 819
13.4.8 The Sandbox / ¥V4H 820
13.4.9 Signed Code / %4 4%15 822
13.5 Java Web Start / Java Web Start 824
13.5.1 Delivering a Java Web Start Application /
ZZAf—~ Java Web Start v 824
13.5.2 The JNLP API / JNLP API 829
Chapter 14: Concurrency /F & 839
14.1 What Are Threads? / fl-4M:4f 840
14.1.1 Using Threads to Give Other Tasks a Chance /
il FH A5 9 HAtAE S5 S AR AT Bl &= 846
14.2 Interrupting Threads / HfZefe 851
143 Thread States / ZKF2IRZ 855
14.3.1 New Threads / #fl@Lkfs 855
14.3.2 Runnable Threads / AJiz{T£kf% 855
14.3.3 Blocked and Waiting Threads / #ifHZELFE 5526 FE 856
1434 Terminated Threads / ##¢ 1L (#1272 857
144 Thread Properties / Zif2J@E: 858
144.1 Thread Priorities / ZKF2L 5% 858
1442 Daemon Threads / “F#'4F% 859
14.43 Handlers for Uncaught Exceptions / Ak 75 1IALEEEE 860
14.5 Synchronization / [d]# 862
14.5.1 An Example of a Race Condition / F&H & FHI—1N8H 862
14.5.2 The Race Condition Explained / 3&4+ 4k {17 866
14.5.3 Lock Objects / #ixf % 868
14.5.4 Condition Objects / X5 872
14.5.5 The synchronized Keyword / synchronized S ¥ 878

14.5.6 Synchronized Blocks / [F]ZFHk 882
14.5.7 The Monitor Concept / WA 2$HES 884
14.5.8 Volatile Fields / volatile B 885
14.5.9 Final Variables / final 28 & 886
14.5.10 Atomics/ JAF 886
14.5.11 Deadlocks / AE%1 889
14.5.12 Thread-Local Variables / Zf2 /5 #i4 & 892
14.5.13 Lock Testing and Timeouts / ¥l 5 i 893
14.5.14 Read / Write Locks / 1%/ 5% 895

14.5.15 Why the stop and suspend Methods Are Deprecated /
43 stop Ml suspend 7772 896
14.6 Blocking Queues / FHZERA% 898
14.7 Thread-Safe Collections / ZFE%2RIES 905
14.7.1 Efficient Maps, Sets, and Queues / R IBGT. SEHRIBAS 905
14.7.2 Atomic Update of Map Entries / BEGSRIUEFEF 907

14.7.3 Bulk Operations on Concurrent Hash Maps /

I RS ST b B 3 SR A 909
14.74 Concurrent Set Views / 3Kk FJEEFLE 912
14.7.5 Copy on Write Arrays / 5 i & #ill %40 912
14.7.6 Parallel Array Algorithms / JF4744 H ik 912
14.7.7 Older Thread-Safe Collections / P& L2 HIES 914
14.8 Callables and Futures / Callable 45 Future 915
14.9 Executors / PUfTe% 920
14.9.1 Thread Pools / ZF2Eih 921
14.9.2 Scheduled Execution / Fii] $447 926
14.9.3 Controlling Groups of Tasks / {54 927
1494 The Fork-Join Framework / Fork-Join HEZ%Z 928
14.9.5 Completable Futures / CompletableFuture 931
14.10 Synchronizers / [F#2& 934
14.10.1 Semaphores / {55 & 935
14.10.2 Countdown Latches / {811 [742 936
14.10.3 Barriers / [EAff 936
14.104 Exchangers / AZ#dy 937

Bx

14.10.5 Synchronous Queues / [6]5 A%

14.11 Threads and Swing / Zf£5 Swing
14.11.1 Running Time-Consuming Tasks / 117 #EHf{£5%
14.11.2 Using the Swing Worker / {£/] Swing T.{E4#%
14.11.3 The Single-Thread Rule / .57 K10

Appendix / B

937
937
939
943
951

953

CHAPTER

Graphics Programming

In this chapter

* 10.1 Introducing Swing, page 538

* 10.2 Creating a Frame, page 543

e 10.3 Positioning a Frame, page 546

¢ 10.4 Displaying Information in a Component, page 554
* 10.5 Working with 2D Shapes, page 560

* 10.6 Using Color, page 569

* 10.7 Using Special Fonts for Text, page 573

* 10.8 Displaying Images, page 582

To this point, you have seen only how to write programs that take input from
the keyboard, fuss with it, and display the results on a console screen. This is not
what most users want now. Modern programs don’t work this way and neither
do web pages. This chapter starts you on the road to writing Java programs that
use a graphical user interface (GUI). In particular, you will learn how to write
programs that size and locate windows on the screen, display text with multiple
fonts in a window, display images, and so on. This gives you a useful, valuable
repertoire of skills that you will put to good use in subsequent chapters as you
write interesting programs.

The next two chapters show you how to process events, such as keystrokes and
mouse clicks, and how to add interface elements, such as menus and buttons, to

537

Chapter 10 m Graphics Programming

your applications. When you finish these three chapters, you will know the
essentials of writing graphical applications. For more sophisticated graphics
programming techniques, we refer you to Volume II.

If, on the other hand, you intend to use Java for server-side programming only
and are not interested in writing GUI programming, you can safely skip these
chapters.

10.1 Introducing Swing

When Java 1.0 was introduced, it contained a class library, which Sun called the
Abstract Window Toolkit (AWT), for basic GUI programming. The basic AWT
library deals with user interface elements by delegating their creation and behavior
to the native GUI toolkit on each target platform (Windows, Solaris, Macintosh,
and so on). For example, if you used the original AWT to put a text box on a Java
window, an underlying “peer” text box actually handled the text input. The re-
sulting program could then, in theory, run on any of these platforms, with the
“look-and-feel” of the target platform—hence Sun’s trademarked slogan:
“Write Once, Run Anywhere.”

The peer-based approach worked well for simple applications, but it soon became
apparent that it was fiendishly difficult to write a high-quality portable graphics
library depending on native user interface elements. User interface elements such
as menus, scrollbars, and text fields can have subtle differences in behavior on
different platforms. It was hard, therefore, to give users a consistent and pre-
dictable experience with this approach. Moreover, some graphical environments
(such as X11/Motif) do not have as rich a collection of user interface components
as does Windows or the Macintosh. This, in turn, further limits a portable library
based on a “lowest common denominator” approach. As a result, GUI applications
built with the AWT simply did not look as nice as native Windows or Macintosh
applications, nor did they have the kind of functionality that users of those plat-
forms had come to expect. More depressingly, there were different bugs in the
AWT user interface library on the different platforms. Developers complained
that they had to test their applications on each platform—a practice derisively
called “write once, debug everywhere.”

In 1996, Netscape created a GUI library they called the IFC (Internet Foundation
Classes) that used an entirely different approach. User interface elements, such
as buttons, menus, and so on, were painted onto blank windows. The only

10.1 Introducing Swing

functionality required from the underlying windowing system was a way to put
up windows and to paint on the window. Thus, Netscape’s IFC widgets looked
and behaved the same no matter which platform the program ran on. Sun worked
with Netscape to perfect this approach, creating a user interface library with the
code name “Swing.” Swing was available as an extension to Java 1.1 and became
a part of the standard library in Java SE 1.2.

Since, as Duke Ellington said, “It Don’t Mean a Thing If It Ain’t Got That Swing,”
Swing is now the official name for the non-peer-based GUI toolkit. Swing is part
of the Java Foundation Classes (JFC). The full JFC is vast and contains far more
than the Swing GUI toolkit; besides the Swing components, it also has an
accessibility API, a 2D API, and a drag-and-drop APIL

NOTE: Swing is not a complete replacement for the AWT—it is built on top of
the AWT architecture. Swing simply gives you more capable user interface
components. Whenever you write a Swing program, you use the foundations of
the AWT—in particular, event handling. From now on, we say “Swing” when we
mean the “painted” user interface classes, and we say ‘AWT” when we mean
the underlying mechanisms of the windowing toolkit, such as event handling.

Of course, Swing-based user interface elements will be somewhat slower to appear
on the user’s screen than the peer-based components used by the AWT. In our
experience, on any reasonably modern machine the speed difference shouldn’t
be a problem. On the other hand, the reasons to choose Swing are overwhelming;:

* Swing has a rich and convenient set of user interface elements.

* Swing has few dependencies on the underlying platform; it is therefore less
prone to platform-specific bugs.

* Swing gives a consistent user experience across platforms.

Still, the third plus is also a potential drawback: If the user interface elements
look the same on all platforms, they look different from the native controls, so
users will be less familiar with them.

Swing solves this problem in a very elegant way. Programmers writing Swing
programs can give the program a specific “look-and-feel.” For example,
Figures 10.1 and 10.2 show the same program running with the Windows and
the GTK look-and-feel.

Chapter 10 m Graphics Programming

Display Options: Text Position:
[¥] Paint Border
o = oo
[¥] Paint Focus \ ‘
o ®
2 ‘s

P SswingSet2
File Look & Feel ¢res Optiens

%EE.E

Button Demo { Source codel

Buttons [Radia auttons] Check Boxsq

r Text Buttons e

rimage Buttons - — |

LX)

Display Optians:
@ Paint Border
[Paint Focus
¥ Enabled

Content Filled

Pad Amount:
@ Default
Qo

O 10

Text Position:

{\x
‘e

e ”

Content Alignment:

f;’/‘\‘q .
3 o

L
-

Press Shift-F10 to activate popup menu

Figure 10.2 The GTK look-and-feel of Swing

10.1 Introducing Swing

Furthermore, Sun developed a platform-independent look-and-feel that was
called “Metal” until the marketing folks renamed it into “Java look-and-feel.”

However, most programmers continue to use the term “Metal,” and we will do
the same in this book.

Some people criticized Metal for being stodgy, and the look was freshened up
for the Java SE 5.0 release (see Figure 10.3). Now the Metal look supports multiple
themes—minor variations in colors and fonts. The default theme is called “Ocean.”

B SwingSet2

File Look & Fea] Themes Options

%@%DIU%W

Button Demo [Source Code]

- ol [

[Buttons [“Radio Butions | Check Boxes |

Text Buttons— Display Options. Text Position:

\ One__] [Two i [Three! ik X] i Paint Boraer V/C'/‘\’Q

[v] Paint Focus

s | [¥lEnabled

© (o] L)
% .
Imaga Buttons] Content Filled Q\o/d

Pad Amount
@ Default Content Alignmant
' oo

9 P "
i Lote P

Press Shift-F10 10 activale popup menu

Figure 10.3 The Ocean theme of the Metal look-and-feel

In Java SE 6, Sun improved the support for the native look-and-feel for Windows
and GTK. A Swing application will now pick up the color scheme customizations

and faithfully render the throbbing buttons and scrollbars that have become
fashionable.

A new look-and-feel, called Nimbus (Figure 10.4), is offered since Java SE 7, but
it is not available by default. Nimbus uses vector drawings, not bitmaps, and is
therefore independent of the screen resolution.

m Chapter 10 m Graphics Programming

SwingSet2

| source code |

) :iuﬁons ‘Checkaoées .

image Buttons

|

|Press Shift-F10 to activate popup menu

Figure 10.4 The Nimbus look-and-feel

Some users prefer their Java applications to use the native look-and-feel of their
platforms, others like Metal or a third-party look-and-feel. As you will see in
Chapter 11, it is very easy to let your users choose their favorite look-and-feel.

< NOTE: Although we won’t have space in this book to tell you how to do it, Java

é programmers can extend an existing look-and-feel or even design a totally new
one. This is a tedious process that involves specifying how each Swing compo-
nent is painted. Some developers have done just that, especially when porting
Java to nontraditional platforms such as kiosk terminals or handheld devices.
See www.javootoo.com for a collection of interesting look-and-feel implementations.

Java SE 5.0 introduced a look-and-feel, called Synth, that makes this process
easier. In Synth, you can define a new look-and-feel by providing image files
and XML descriptors, without doing any programming.

TIP: The Napkin look-and-feel (http://napkinlaf.sourceforge.net) gives a hand-drawn

d appearance to all user interface elements. This is very useful when you show
prototypes to your customers, sending a clear message that you're not giving
them a finished product.

10.2 Creating a Frame

NOTE: Most Java user interface programming is nowadays done in Swing, with
one notable exception. The Eclipse integrated development environment uses
a graphics toolkit called SWT that is similar to the AWT, mapping to the native
components on various platforms. You can find articles describing SWT at
www.eclipse.org/articles.

Oracle is developing an alternate technology, called JavaFX, as a replacement
for Swing. We do not discuss JavaFX in this book. See http://docs.oracle.com/
javase/8/javafx/get-started-tutorial /jfx-overview.htm for more information.

If you have programmed Microsoft Windows applications with Visual Basic or
C#, you know about the ease of use that comes with the graphical layout tools
and resource editors these products provide. These tools let you design the visual
appearance of your application, and then they generate much (often all) of the
GUI code for you. GUI builders are available for Java programming too, but we
feel that in order to use these tools effectively, you should know how to build a
user interface manually. The remainder of this chapter shows you the basics of
displaying windows and painting their contents.

10.2 Creating a Frame

A top-level window (that is, a window that is not contained inside another win-
dow) is called a frame in Java. The AWT library has a class, called Frane, for this
top level. The Swing version of this class is called JFrame and extends the Frame class.
The JFrame is one of the few Swing components that is not painted on a canvas.
Thus, the decorations (buttons, title bar, icons, and so on) are drawn by the user’s
windowing system, not by Swing.

CAUTION: Most Swing component classes start with a “J”: JButton, JFrame, and

0 so on. There are classes such as Button and Frame, but they are AWT components.
If you accidentally omit a “J} your program may still compile and run, but the
mixture of Swing and AWT components can lead to visual and behavioral
inconsistencies.

In this section, we will go over the most common methods for working with a
Swing JFrame. Listing 10.1 lists a simple program that displays an empty frame on
the screen, as illustrated in Figure 10.5.

m Chapter 10 m Graphics Programming

Figure 10.5 The simplest visible frame

Listing 10.1 simplefrane/SinpleFraneTest. java

package simpleFrame;

import java.awt.*;
import javax.swing.*;

/‘k'k

* @version 1.33 2015-05-12

* @author Cay Horstmann

4

10 public class SimpleFrameTest

1n {

12 public static void main(String[] args)
13 {

14 EventQueue.invokeLater(() ->

15 {

16 SimpleFrame frame = new SimpleFrame();

17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 frame.setVisible(true);

18 D;

2 }

u)

W @ o~ @ v B W

23 class SimpleFrame extends JFrame

u |

25 private static final int DEFAULT_WIDTH = 300;
% private static final int DEFAULT_HEICGHT = 200;

2 public SimpleFrame()

29 {
30 setSize (DEFAULT_WIDTH, DEFAULT_HEIGHT);
31 }

2}

10.2 Creating a Frame

Let’s work through this program, line by line.

The Swing classes are placed in the javax.swing package. The package name javax
indicates a Java extension package, not a core package. For historical reasons,
Swing is considered an extension. However, it is present in every Java SE
implementation since version 1.2.

By default, a frame has a rather useless size of 0 x 0 pixels. We define a subclass
SimpleFrame whose constructor sets the size to 300 x 200 pixels. This is the only
difference between a Simpleframe and a JFrame.

In the main method of the SimpleFrameTest class, we construct a SimpleFrame object and
make it visible.

There are two technical issues that we need to address in every Swing program.

First, all Swing components must be configured from the event dispatch thread, the
thread of control that passes events such as mouse clicks and keystrokes to
the user interface components. The following code fragment is used to execute
statements in the event dispatch thread: y

EventQueue.invokelater(() -»

{

statements

b;

We discuss the details in Chapter 14. For now, you should simply consider it a
magic incantation that is used to start a Swing program.

NOTE: You will see many Swing programs that do not initialize the user interface
in the event dispatch thread. It used to be perfectly acceptable to carry out the
initialization in the main thread. Sadly, as Swing components got more complex,
the developers of the JDK were no longer able to guarantee the safety of that
approach. The probability of an error is extremely low, but you would not want
to be one of the unlucky few who encounter an intermittent problem. It is
better to do the right thing, even if the code looks rather mysterious.

Next, we define what should happen when the user closes the application’s frame.
For this particular program, we want the program to exit. To select this behavior,
we use the statement

frame.setDefaultCloseQperation(JFrame. EXIT_ON_CLOSE);

In other programs with multiple frames, you would not want the program to
exit just because the user closes one of the frames. By default, a frame is hidden
when the user closes it, but the program does not terminate. (It might have been

