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To the Student

Each year, the world of computing gets more and more exciting. Computing
hardware is smaller, faster, and cheaper than ever before. The shelves of your local
computer store are lined with all sorts of application programs that would have been
unimaginable a decade ago. Technological innovations like the Internet and the
World Wide Web are revolutionizing the way people find information, transact
business, and communicate with one another. And through it all, the opportunities
available to people who understand computing technology seem to grow without
bounds.

The study of computer science often works in a similar way. With each new
concept you learn, programming becomes increasingly exciting. You can be more
creative, solve harder problems, and develop more sophisticated programs and tools.
If you are reading this book, you probably have completed an introductory computer
science course and understand a little about the sense of empowerment that
programming conveys. But you have only scratched the surface.

Most introductory courses focus on the mechanics of programming. You learn
about the syntax of a particular language and how to write simple programs in that
language. The purpose of this book is to expand your horizons by introducing you
to the more intellectually challenging aspects of the programming process.
Programming is not about memorizing rules or writing the code for simple
processes you already understand. Programming is about solving hard problems.
Solving hard problems requires a lot of thought and, in most cases, a great deal of
work.

You can, however, simplify the process by taking advantage of the strategies and
methodologies presented in this book. Many of the concepts you will learn as you
study the different parts of this text—from broad strategies like recursion to specific
techniques like hashing—will enable you to solve problems that now seem
completely beyond your reach. Learning those concepts will certainly be
challenging. It may at times be frustrating. If you rise to the challenge and work
past the frustrations, your reward at the end will be a deeper understanding of the
power of computing that will create still more opportunities on the path ahead.

I wish you a pleasant journey along that road.

Eric Roberts

Department of Computer Science
Stanford University

June 1997



To the Instructor

This text is intended for use in the second programming course in a typical college
or university curriculum. It covers the material in the standard CS2 course, as
defined by the ACM Curriculum 78 report and includes most of the knowledge
units in the “Algorithms and Data Structures” subject area of Computing Curriculum
1991.

Programming Abstractions in C provides students with solid methodological
skills that are consistent with the principles of modern software engineering. It
builds on the foundation provided by my 1995 textbook, The Art and Science of C,
and focuses on abstraction and interface design as central themes. Both texts use a
common set of libraries that make coding in C far less complex and consequently
much more accessible to the novice. These libraries have proven extremely
successful with students, not only at Stanford, but at many other institutions as
well. That success, however, depends on having the faculty or staff at each local
institution provide libraries for the platforms the students use. The code for the
libraries is available by FTP from Addison-Wesley at the following URL:

ftp://aw.com/aw.computer.science/Roberts.CS1.C

Even though I conceived of the two books as a sequence, you can easily use
Programming Abstractions in C on its own. Part One of this book includes all the
background information students might need from The Art and Science of C—
certainly enough to understand both the examples and the overall approach taken in
the rest of the book. Because the presentation in Part One is fast-paced, students
should already be familiar with fundamental programming concepts at the level of an
introductory course. They do not, however, need any prior exposure to C, which is
covered in the first few chapters. Students who have studied The Art and Science of
C can simply skip Part One altogether.

With the background provided by Part One, students are ready to move to new
material. Part Two focuses on recursion, with an extensive set of examples that
spans four chapters. In my experience, the optimal place to introduce recursion is at
the beginning of the second programming course, largely for tactical reasons. Many
students find recursion a difficult concept—one that requires considerable time to
master. If they confront recursion at the beginning of a term, students have more
time to come to grips with the concept. The placement of recursion early in this
text allows you to include recursion on homework assignments and exams
throughout the term. Students who do poorly on recursive problems at midterm
time will be alerted to this gap in their understanding early enough to take corrective
action.

If you are pressed for time in your treatment of recursion, you can omit Section
6.1 of Part Two without disturbing the flow of the presentation. Although the
minimax algorithm may be too complicated for some students, it demonstrates the
enormous power of recursion to solve difficult problems with a small amount of



code. Similary, the sections in Chapter 7 that cover the theoretical foundations of
big-O notation and mathematical induction are not essential to the rest of the text.

Part Three has a twofold purpose. On the one hand, it introduces the principal
nonrecursive types one expects to see in a data structures course, including stacks,
queues, and symbol tables. On the other, this part of the text provides students with
the tools they need to understand data abstraction in the context of interface-based
programming. The concept that unifies the chapters in this part is the abstract data
type or ADT, which is defined by its behavior rather than its representation.

One of the important features of this book is that it uses the incomplete type
facility of ANSI C to define ADTs whose internal representation is completely
inaccessible to the client. Because this programming style enforces the abstraction
barrier, students develop the programming habits they need to write well-structured,
modular code. I have also taken the position that the interfaces presented in the text
should be useful tools in their own right. In most cases, students will be able to
incorporate these interfaces and implementations directly into their own code.

The last chapter in Part Three, Chapter 11, introduces several important
concepts, including function pointers, mapping functions, and iterators. Iterators are
a relatively new addition to the Stanford course, but an extremely successful one. In
our experience, the extra work required to build the iterator abstraction is more than
offset by the reduction in complexity of client code.

Parts Three and Four both focus on abstract data types. To a certain extent, the
division between these parts is artificial. The difference is that the ADTs in Part
Four are implemented recursively while those in Part Three are not. The advantage
of this organization is that Part Four plays a unifying role, drawing together the
topics of recursion and ADTs in the two preceding parts.

Although the material on expression trees in Chapter 14 may be omitted without
losing continuity, I have found it valuable to include this material as early as
possible in the curriculum, because doing so reduces the level of mystery
surrounding the operation of the C compiler and therefore helps students feel more
in control about programming.

Chapter 17 does not really belong to the main body of the text but instead
pushes the limits of the material toward the next set of topics that the students are
likely to encounter. This final chapter focuses on object-oriented programming,
using Java to illustrate the major concepts. Although some institutions have already
begun to use Java in the introductory sequence, we believe that it is still makes
sense to introduce the procedural approach first and move on to object-oriented
programming thereafter for the following reasons:

1. Java environments are changing too rapidly to offer a stable base for teaching.

2. Students need to understand the procedural programming paradigm.

3. If you emphasize data abstraction and interfaces in the introductory courses,
students are well prepared for the transition to object-oriented programming.

Our experience at Stanford convinces us that this strategy works remarkably well
and allows students to adopt the object-oriented paradigm with relative ease.
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