PEARSON
—

Addison

R hi + EE

- (R
Programming
- Abstractions in

[Ty

Eric S. Roberts
18 3|8 K ¥

y MM T W W OAR A

“1{ China Machine Press

= K R B ¥ =K

CERRITIHREE

(SR3hR)

" Programming Abstractions in C

£ Eric S. Roberts
k (%) BT 18 & K ¥ & /

MM T MR

' China Machine Press

A Second Course in Computer Sc%en(:e ol

English reprint edition copyright © 2004 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Programming Abstractions in C: A Second Course in
Computer Science (ISBN: 0-201-54541-1) by Eric S. Roberts, Copyright © 1998.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Addison-Wesley Longman, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A A5 SR EN R i Pearson Education Asia Ltd &AL Tolk Rk s iR . AR 22 HikR
HBEFAT, ARLMER S XA B S RABAZE .

(BT AR SRR (A RGP E &, 3R AT B R E &S)
BRIT.

A A5 5 i A Pearson Education (BfA 7 HARSER) SOLHithir%, TTARER A GHIE.

WAL A, RS-

ABRRAEIZS: EF: 01-2004-0182

BHER®E (CIP) ¥iF

CRFIRIHI MR B4 (F3chi) / (£) PIAK (Roberts, E. S.) . —Jb5t: Pl Tl
HRREE, 2004.6

(W R 5%)

54)5 3C: Programming Abstractions in C: A Second Course in Computer Science

ISBN 7-111-13788-4
1.C I.% - IICIES - BFEi - %3 V. TP312
b E R A B B IECIPE IR 7 (2003) $5126644-5

HUBE Tl HRRRE (Aeson stk 5 FE K22 BECHRY 100037)

siEgiE: RiRE
e A= L RLERRN ENRI - BrAEBEAL s KA & AT
20044F6 H 55 1R 55 1o ENAI

787mm x 1092mm 1/16 - 52.75 Efl5k
El%c: 0001-3 000 it
Efr: 69.00 ¢

A, aAHTl. BoT. GRUT, miAthRiTimis
AWk (010) 68326294

BhRE B91E

XEE UM, B BIRHERE AR P B ARG, (5780 B K E B ARHEN &
GRS T MRS e X MRS, R E RS BEAR KRBT ZER LK
. G EE . Er kRS, REMN LA SEF R ERE S, HREIL¥FH
FIVF % 2 UL L Rl B AL FHF N BoE R R 2k, thbf ™= AR R 2 P2 2, A OUERI THFZR
HI7EmE, BABE T FARMEE, BEEEERME, XAR¥EME, HMEAARASHEEANK
L R

LA, E2ERKE BB MEZ T, REMHEI™ X ERE, S5k AARFERA &
BY. AR EEF R MR A LILE, ki, e LB rEIX e Rk LD
e, ERERGBEARKBEMRZM. Mk REDHBUR T, 6% LB ERERLT
AL R R LT ERBREN 2 BB A T 2 EREE 244, Hit, sl#—#EIMEF T
FALEA B B T EALEH R RERRHEZER, i St Ei. BixEEMH
R—RRKFHILHZE.

AL Tl H RS AL e B e S5 BA PR A Rl IR S “HIRE A BF RS ™. B 19984EF 45,
TN AR TR AR Ti#E. BEEIMLFEM L. 23 LENARSE L, &IN5
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ {2 2 R A w187 TR
HFHIATER Z, IWEMBELA B BE R #obt b B %k Hi Tanenbaum, Stroustrup, Kernighan, Jim
Gray% Kl A K —#LMrEm, DL “THRILBHENET AHSFREM, BikHE¥ 2], IR %
e KERAECERRYEE, WIERIL T iXENSR G AL AAE .

“UHREHEHENET B TER R TENMEERR DR, ENRTR AR T hE
PLIEBIHR T, EAERS &AL T B B T, i A5 A1 oA 2 ek e R
MfEHE, ANEEHARBIPEAETF. €4, “HREILFZEAE bl TEaE &
XEEPBFEARE PROL T RFAI O, HHF2 S RAAEXBEM IS % B8, Ait— D
THRIEFTT T RERIEEA .

Bifi 5 B IR 00 50 38 RN B0 SO R B oRL BRSSO) 7 R Fn .
WEAN—AFHIBTE . A, EEATEMASEREMBNE, £ “ERHEF NEHKIZT
HR = RN RN B B “THREVLEHFAEAT Z4h, M2 ENRR Bkt , WIS 2 o e L
SR ET 5 [ER, SIS EEITRIEF S5 “Schaum’s Outlines” RFIHMK “2EL
IR F RN A TRIEX N BRAUSEHE, A T E A AR mEmIIRS,
HEAGAMIE ThEBER. R KF. EERE BRI KRY. REXY. L@@ KE.
FERUR . WHLKR. hEFPHERS . WRET RS, AEKEARY. PEARKY:. b
UMLK K. Lo K. fIlR%: . MBCER T K%, MM KFE. WL Tk, hEE

FKAG B 2 MPEAE .05 B N & A KPR E TRV & S SURT & 224K ‘%
KIGFERAET, AT ER G 8 W R & .

iX =B NAS R i o B F R AR Y B R MR B S 13, A N @ B T BRL B A 56 Ll)
YRR ST . P2 52 AM. 1 T., Stanford, U.C. Berkeley, C. M. U. St 4, i
KPR AMUHRE TRFIXE. BIRSEH. #ER%. TRV RS, BiRE. %R
B, OROGTR. BEY. @E5M%. BEECEFEN KA S b 8 g o if e,
mH&BfFe—ANHAESRITEZF. ANEL = HERATE. AREHSERNILE
P BER A . e X S 5 Bl TR 20 KERIHR S| 2 F . S8 L THEHLRNER) & B fos
MAZE.

BURHITER . MPIEM . —RIIEE . PSR g, X 2R FER0E
BA THREORIUE, HIAIH B bR R8T, 5 & W IE & Bl 1k Bx — 24 B s &
EARB) . BMRHAR R B SRS RIS AR . AETE 2 FIG A Ak A0 TR H
HES THIE, BWIBRAR LT

HLf-#B4:: hzedu@hzbook.com

B ZWi%: (010) 68995264

BeFR Ml bR A h RS
MR B 4wfi: 100037,

ERESE

J
(et FC 2B i L))

1 1
IEF
EY
Ak
3%

=

R

paY

£ A
Z %
FF
% 1) 2%
HoE
B 2R
Z A)

¥ £H
% iR
-
B 18 %
% 4
JE -
A2 B} 3%

In loving memory of Rae Pober (1900-1997) for all
the joy she brought, not only to my grandmother,
but to everyone whose life she touched.

To the Student

Each year, the world of computing gets more and more exciting. Computing
hardware is smaller, faster, and cheaper than ever before. The shelves of your local
computer store are lined with all sorts of application programs that would have been
unimaginable a decade ago. Technological innovations like the Internet and the
World Wide Web are revolutionizing the way people find information, transact
business, and communicate with one another. And through it all, the opportunities
available to people who understand computing technology seem to grow without
bounds.

The study of computer science often works in a similar way. With each new
concept you learn, programming becomes increasingly exciting. You can be more
creative, solve harder problems, and develop more sophisticated programs and tools.
If you are reading this book, you probably have completed an introductory computer
science course and understand a little about the sense of empowerment that
programming conveys. But you have only scratched the surface.

Most introductory courses focus on the mechanics of programming. You learn
about the syntax of a particular language and how to write simple programs in that
language. The purpose of this book is to expand your horizons by introducing you
to the more intellectually challenging aspects of the programming process.
Programming is not about memorizing rules or writing the code for simple
processes you already understand. Programming is about solving hard problems.
Solving hard problems requires a lot of thought and, in most cases, a great deal of
work.

You can, however, simplify the process by taking advantage of the strategies and
methodologies presented in this book. Many of the concepts you will learn as you
study the different parts of this text—from broad strategies like recursion to specific
techniques like hashing—will enable you to solve problems that now seem
completely beyond your reach. Learning those concepts will certainly be
challenging. It may at times be frustrating. If you rise to the challenge and work
past the frustrations, your reward at the end will be a deeper understanding of the
power of computing that will create still more opportunities on the path ahead.

I wish you a pleasant journey along that road.

Eric Roberts

Department of Computer Science
Stanford University

June 1997

To the Instructor

This text is intended for use in the second programming course in a typical college
or university curriculum. It covers the material in the standard CS2 course, as
defined by the ACM Curriculum 78 report and includes most of the knowledge
units in the “Algorithms and Data Structures” subject area of Computing Curriculum
1991.

Programming Abstractions in C provides students with solid methodological
skills that are consistent with the principles of modern software engineering. It
builds on the foundation provided by my 1995 textbook, The Art and Science of C,
and focuses on abstraction and interface design as central themes. Both texts use a
common set of libraries that make coding in C far less complex and consequently
much more accessible to the novice. These libraries have proven extremely
successful with students, not only at Stanford, but at many other institutions as
well. That success, however, depends on having the faculty or staff at each local
institution provide libraries for the platforms the students use. The code for the
libraries is available by FTP from Addison-Wesley at the following URL:

ftp://aw.com/aw.computer.science/Roberts.CS1.C

Even though I conceived of the two books as a sequence, you can easily use
Programming Abstractions in C on its own. Part One of this book includes all the
background information students might need from The Art and Science of C—
certainly enough to understand both the examples and the overall approach taken in
the rest of the book. Because the presentation in Part One is fast-paced, students
should already be familiar with fundamental programming concepts at the level of an
introductory course. They do not, however, need any prior exposure to C, which is
covered in the first few chapters. Students who have studied The Art and Science of
C can simply skip Part One altogether.

With the background provided by Part One, students are ready to move to new
material. Part Two focuses on recursion, with an extensive set of examples that
spans four chapters. In my experience, the optimal place to introduce recursion is at
the beginning of the second programming course, largely for tactical reasons. Many
students find recursion a difficult concept—one that requires considerable time to
master. If they confront recursion at the beginning of a term, students have more
time to come to grips with the concept. The placement of recursion early in this
text allows you to include recursion on homework assignments and exams
throughout the term. Students who do poorly on recursive problems at midterm
time will be alerted to this gap in their understanding early enough to take corrective
action.

If you are pressed for time in your treatment of recursion, you can omit Section
6.1 of Part Two without disturbing the flow of the presentation. Although the
minimax algorithm may be too complicated for some students, it demonstrates the
enormous power of recursion to solve difficult problems with a small amount of

code. Similary, the sections in Chapter 7 that cover the theoretical foundations of
big-O notation and mathematical induction are not essential to the rest of the text.

Part Three has a twofold purpose. On the one hand, it introduces the principal
nonrecursive types one expects to see in a data structures course, including stacks,
queues, and symbol tables. On the other, this part of the text provides students with
the tools they need to understand data abstraction in the context of interface-based
programming. The concept that unifies the chapters in this part is the abstract data
type or ADT, which is defined by its behavior rather than its representation.

One of the important features of this book is that it uses the incomplete type
facility of ANSI C to define ADTs whose internal representation is completely
inaccessible to the client. Because this programming style enforces the abstraction
barrier, students develop the programming habits they need to write well-structured,
modular code. I have also taken the position that the interfaces presented in the text
should be useful tools in their own right. In most cases, students will be able to
incorporate these interfaces and implementations directly into their own code.

The last chapter in Part Three, Chapter 11, introduces several important
concepts, including function pointers, mapping functions, and iterators. Iterators are
a relatively new addition to the Stanford course, but an extremely successful one. In
our experience, the extra work required to build the iterator abstraction is more than
offset by the reduction in complexity of client code.

Parts Three and Four both focus on abstract data types. To a certain extent, the
division between these parts is artificial. The difference is that the ADTs in Part
Four are implemented recursively while those in Part Three are not. The advantage
of this organization is that Part Four plays a unifying role, drawing together the
topics of recursion and ADTs in the two preceding parts.

Although the material on expression trees in Chapter 14 may be omitted without
losing continuity, I have found it valuable to include this material as early as
possible in the curriculum, because doing so reduces the level of mystery
surrounding the operation of the C compiler and therefore helps students feel more
in control about programming.

Chapter 17 does not really belong to the main body of the text but instead
pushes the limits of the material toward the next set of topics that the students are
likely to encounter. This final chapter focuses on object-oriented programming,
using Java to illustrate the major concepts. Although some institutions have already
begun to use Java in the introductory sequence, we believe that it is still makes
sense to introduce the procedural approach first and move on to object-oriented
programming thereafter for the following reasons:

1. Java environments are changing too rapidly to offer a stable base for teaching.

2. Students need to understand the procedural programming paradigm.

3. If you emphasize data abstraction and interfaces in the introductory courses,
students are well prepared for the transition to object-oriented programming.

Our experience at Stanford convinces us that this strategy works remarkably well
and allows students to adopt the object-oriented paradigm with relative ease.

Acknowledgments

Writing a textbook is never the work of a single individual. In putting this book
together, I have -been extremely fortunate to have the help of many talented and
dedicated people. I particularly want to thank the following colleagues at Stanford,
who have contributed to this project in so many different ways:

8 The lecturers who have taught from draft versions of this text over the last
few years, including Jerry Cain, Maggie Johnson, Bob Plummer, Mehran
Sahami, and Julie Zelenski

® My teaching assistants, Stacey Doerr and Brian O’Connor, who helped refine
the assignments for the course, many of which appear as exercises

® The entire team of undergraduate section leaders, who had to explain to
students all the concepts that I left out of the earlier drafts

® Steve Freund and the members of the Thetis development team, who have
provided a wonderful computing environment for student use

B The staff of the Education Division, most notably Claire Stager and Eddie
Wallace, for keeping everything running smoothly

8 The participants in my seminar on teaching introductory computer science

® The Stanford students who have taken our courses and showed us the amazing
things they can accomplish

I appreciate the contributions provided by Addison-Welsey reviewers, whose
comments definitely improved the structure and quality of the book:

Phillip Barry, University of Minnesota
Martin Cohn, Brandeis University

Dan Ellard, Harvard University

Gopal Gupta, New Mexico

Phillip W. Hutto, Emory University
Randall Pruim, Boston University
Zhong Shao, Yale University

I also received extremely useful suggestions from Joe Buhler at Reed College, Pavel
Curtis at PlaceWare, Inc., and Jim Mayfield at the University of Maryland,
Baltimore County. Much of the work on the book took place while I was on
sabbatical at Reed, and I am grateful to Joe and his colleagues in the Mathematics
Department for providing such a wonderful place to work.

I want to express my gratitude to my editor, Susan Hartman, and the entire staff
at Addison-Wesley—Cynthia Benn, Lynne Doran Cote, Jackie Davies, Julie Dunn,
Peter Gordon, Amy Willcutt, Bob Woodbury, and Tom Ziolkowski—for their
support on this book as well as its predecessor.

Most of all, I want to thank my partner Lauren Rusk, who has again worked her
magic as my developmental editor. Lauren’s expertise adds considerable clarity and
polish to the text. Without her, nothing would ever come out nearly as well.

Contents
PART ONE

Preliminaries 1

1 An Overview of ANSI C

3
2

—

1.3

1.4

k.8

What is C2 4

The structure of a C program 5

Comments 7, Llibrary inclusions 8, Program-level
definitions 8, Function prototypes @, The main program 9,
Function definitions 10

Variables, values, and types 11

Variables 11, Naming conventions 12, local and global
variables 13, The concept of a data type 13, Integer

types 14, Floating-point gpes 15, Text types 16, Boolean
type 18, Simple input and output 18

Expressions 20

Precedence and associativity 21, Mixing types in an
expression 22, Integer division and the remainder

operator 23, Type casts 24, The assignment operator 24,
Increment and decrement operators 26, Boolean operators 28
Statements 30

Simple statements 30, Blocks 30, The if statement 31, The
switch statement 32, The while statement 34, The for
statement 36

Functions 39

Returning results from functions 39, Function definitions and
prototypes 40, The mechanics of the function-calling
process 40, Stepwise refinement 41

Summary 42

Review questions 43

Programming exercises 45

2 Data Types in C 51

2.1

2.2
2.3

Enumeration types 52

Internal representation of enumeration types 53, Scalar

types 54, Understonding typedef 55

Data and memory 56

Bits, bytes, and words 56, Memory addresses 57

Pointers 59

Using addresses as data values 60, Declaring pointer
variables 60, The fundamental pointer operations 61, The
special pointer NULL 64, Passing paramefers by reference 64

xiii

2.4 Arrays 66
Array declaration 69, Array selection 70, Effective and
allocated sizes 71, Passing arrays as parameters 72,
Initialization of arrays 72, Multidimensional arrays 75
2.5 Pointers and arrays 77
Pointer arithmetic /8, Incrementing and decrementing
pointers 81, The relationship between pointers and arrays 82
2.6 Records 84
Defining a new structure type 85, Declaring structure
variables 85, Record selection 86, Initializing records 86,
Pointers to records 87
2.7 Dynamic allocation 88
The type void * 89, Coping with memory limitations 90,
Dynamic arrays 91, Dynamic records 93
Summary 94
Review questions 95
Programming exercises 98
3 Libraries and Interfaces 107
3.1 The concept of an interface 108
Interfaces and implementations 108, Packages and
abstractions 109, Principles of good interface design 110
3.2 Random numbers 111
The structure of the random.h interface 111, Constructing a
client program 115, The ANSI functions for random
numbers 117, The random.c implementation 120
3.3 Strings 123
The underlying representation of a string 124, The data type
string 125, The ANSI string library 127, The strilib.h
interface 132
3.4 The standard 1/O library 138
Data files 138, Using files in C 139, Standard files 141,
Character I/O 141, Rereading characters from an input
file 142, Updating a file 142, Lline-oriented |/O 145,
Formatted |/O 146, The scanf functions 146
3.5 Other ANSI libraries 148

Summary 150
Review questions 151
Programming exercises 154

Xiv

PART TWO

Recursion and Algorithmic Analysis 161

4 Introduction to Recursion 163

4.1
4.2

4.3

4.4

4.5

A simple example of recursion 164

The factorial function 166

The recursive formulation of Fact 167, Tracing the recursive
process 167, The recursive leap of faith 171

The Fibonacci function 172

Computing terms in the Fibonacci sequence 173, Gaining
confidence in the recursive implementation 174, Efficiency of
the recursive implementation 176, Recursion is not fo

blame 176

Other examples of recursion 178
Detecting palindromes 179, Binary search 180, Mutual
recursion 182

Thinking recursively 185
Maintaining a holistic perspective 185, Avoiding the common
pitfalls 186

Summary 187
Review questions 188
Programming exercises 190

5 Recursive Procedures 195

5.1

52
5.3

6.1

The Tower of Hanoi 196

Framing the problem 197, Finding a recursive strategy 198,
Validating the strategy 200, Coding the solution 201,
Tracing tﬁe recursive process 201

Generating permutations 206
The recursive insight 207

Graphical opEIicotions of recursion 208
The graphics library 209, An example from computer
art 212, Fractals 217

Summary 222
Review questions 223
Programming exercises 224

6 Backtracking Algorithms 235

Solving a maze by recursive backtracking 236

The righthand rule 236, Finding a recursive approach 237,
Identifying the simple cases 238, Coding the maze solution
algorithm 239, Convincing yourself that the solution
works 243

XV

6.2 Backiracking and games 245
The game of nim 246, A generalized program for two-player
gomes 248, The minimax strategy 254, Implementing the
minimax algorithm 257, Using the general strategy to solve a
specific game 259
Summary 272
Review questions 272

Programming exercises 274

7 Algorithmic Analysis 283
7.1 The sorting problem 284

The selection sort algorithm 285, Empirical measurements of
performance 286, Analyzing the performance of selection

sort 287

7.2 Computational complexigl 288
Big-O notation 289, Standard simplifications of bigO 290,
The computational complexity of selection sort 290,
Predicting computational complexity from code structure 291,
Worstcase versus average-case complexity 293, A formal

definition of big-O 294

7.3 Recursion to the rescue 296
The power of divide-andconquer strategies 296, Merging two
arrays 297, The merge sort algorithm 298, The
computational complexity of merge sort 300, Comparing N2
and N log N performance 302

7.4 Standard complexity classes 303
7.5 The Quicksort algorithm 306

Partitioning the array 308, Analyzing the performance of
Quicksort 311

7.6 Mathematical induction 312

Summary 315
Review questions 316
Programming exercises 318

PART THREE
Data Abstraction 325

8 Abstract Data Types 327

8.1 Stacks 328

The basic stack metaphor 329, Stacks and function
calls 329, Stacks and pocket calculators 330

XVi

8.2

8.3
8.4

8.5

Defining a stack ADT 331

Defining the types for the stack abstraction 331, Opaqgue
types 333, Defining the stack.h interface 334

Using stacks in an application 338

lmflemenﬁng the stack abstraction 342
Detining the concrete type 342, Implementing the stack
operations 342, The cxf/on!cges of opaque types 344,
Improving the stack.c implementation 345

Defining a scanner ADT 347

The dangers of encapsulated state 347, Abstract data types as
an alfernative to encapsulated state 348, Implementing the
scanner abstraction 353

Summary 358
Review questions 359
Programming exercises 360

9 Efficiency and ADTs 373

9.1
9.2

e

9.4

2.9

The concept of an editor buffer 374

Defining the buffer abstraction 375
Functions in the butfer.h interface 376, Coding the editor
application 379

ImFlemenﬁng the editor usin? arrays 380

Defining the concrete type 38T, Implementing the buffer
operations 382, The computational complexity of the array
implementation 385

ImFIementing the editor using stacks 386

Detining the concrete structure for the stack-based buffer 387,
Implementing the buffer operations 387, Comparing
computational complexities 388

Implementing the editor using linked lists 391

The concept of a linked list 392, Designing a linked-list data
structure 393, Using a linked list to represent the

buffer 394, Insertion into a linked-list buffer 396, Deletion
in a linked-list buffer 398, Cursor motion in the linked-list
representation 399, linked-list idioms 402, Completing the
buffer implementation 403, Computational complexity o% the
linked-list buffer 404, Doubly linked lists 407, Time-space
tradeoffs 408

Summary 409
Review questions 410
Programming exercises 411

10 Linear Structures 419

10.1
10.2

10.3

Stacks revisited 420

Queves 424

The structure of the queue.h intefface 427, Array-based
implementation of queues 427, Llinked-list representation of
queves 433

Simulations involving queves 436

Simulations and models 439, The waitingline model 440,
Discrete time 440, Events in simulated time 441,
Implementing the simulation 442

Summary 448

Review questions 449

Programming exercises 451

11 Symbol Tables 457

11.1

11.2

1.3
11.4

11.5

11.6

11.7

Defining a symbol table abstraction 458

Choosing types for values and keys 458, Representing an
undefined entry 460, A preliminary version of the symbol
table interface 461

Hashing 462
Implementing the hash table strategy 463, Choosing a hash

function 468, Determining the number of buckets 470
Limitations of the preliminary interface 471

Using functions as data 473

A general plotting function 473, Declaring pointers to
functions and function classes 474, Implementing
PlotFunction 475, The gsort function 476
Mapping functions 481

Mapping over entries in a symbol table 481, Implementing

MapSymbolTable 484, Passing client data to callback
functions 485

lterators 486
Using iterators 487, Defining the iterator interface 488,
Implementing the iterator abstraction for symbol tables 488

Command dispatch tables 492
Summary 496

Review questions 497
Programming exercises 499

XVii

