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Foreword

Ever since we started the Spark project at Berkeley, I've been excited about not just
building fast parallel systems, but helping more and more people make use of large-
scale computing. This is why I'm very happy to see this book, written by four experts
in data science, on advanced analytics with Spark. Sandy, Uri, Sean, and Josh have
been working with Spark for a while, and have put together a great collection of con-
tent with equal parts explanations and examples.

The thing I like most about this book is its focus on examples, which are all drawn
from real applications on real-world data sets. It’s hard to find one, let alone ten
examples that cover big data and that you can run on your laptop, but the authors
have managed to create such a collection and set everything up so you can run them
in Spark. Moreover, the authors cover not just the core algorithms, but the intricacies
of data preparation and model tuning that are needed to really get good results. You
should be able to take the concepts in these examples and directly apply them to your
own problems.

Big data processing is undoubtedly one of the most exciting areas in computing
today, and remains an area of fast evolution and introduction of new ideas. I hope
that this book helps you get started in this exciting new field.

—Matei Zaharia, CTO at Databricks and Vice President, Apache Spark
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Preface

Sandy Ryza

I don't like to think I have many regrets, but it’s hard to believe anything good came
out of a particular lazy moment in 2011 when I was looking into how to best distrib-
ute tough discrete optimization problems over clusters of computers. My advisor
explained this newfangled Spark thing he had heard of, and I basically wrote off the
concept as too good to be true and promptly got back to writing my undergrad thesis
in MapReduce. Since then, Spark and I have both matured a bit, but one of us has
seen a meteoric rise that’s nearly impossible to avoid making “ignite” puns about. Cut
to two years later, and it has become crystal clear that Spark is something worth pay-
ing attention to.

Spark’s long lineage of predecessors, running from MPI to MapReduce, makes it pos-
sible to write programs that take advantage of massive resources while abstracting
away the nitty-gritty details of distributed systems. As much as data processing needs
have motivated the development of these frameworks, in a way the field of big data
has become so related to these frameworks that its scope is defined by what these
frameworks can handle. Spark’s promise is to take this a little further—to make writ-
ing distributed programs feel like writing regular programs.

Spark will be great at giving ETL pipelines huge boosts in performance and easing
some of the pain that feeds the MapReduce programmer’s daily chant of despair
(“why? whyyyyy?”) to the Hadoop gods. But the exciting thing for me about it has
always been what it opens up for complex analytics. With a paradigm that supports
iterative algorithms and interactive exploration, Spark is finally an open source
framework that allows a data scientist to be productive with large data sets.

I think the best way to teach data science is by example. To that end, my colleagues
and I have put together a book of applications, trying to touch on the interactions
between the most common algorithms, data sets, and design patterns in large-scale
analytics. This book isn’t meant to be read cover to cover. Page to a chapter that looks
like something you're trying to accomplish, or that simply ignites your interest.




What’s in This Book

The first chapter will place Spark within the wider context of data science and big
data analytics. After that, each chapter will comprise a self-contained analysis using
Spark. The second chapter will introduce the basics of data processing in Spark and
Scala through a use case in data cleansing. The next few chapters will delve into the
meat and potatoes of machine learning with Spark, applying some of the most com-
mon algorithms in canonical applications. The remaining chapters are a bit more of a
grab bag and apply Spark in slightly more exotic applications—for example, querying
Wikipedia through latent semantic relationships in the text or analyzing genomics
data.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/sryza/aas.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: "Advanced Analytics with Spark by
Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills (O'Reilly). Copyright 2015
Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills, 978-1-491-91276-8”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

«* Safari Books Online is an on-demand digital library that deliv-
; Safﬁgﬁé ers expert content in both book and video form from the
world’s leading authors in technology and business.
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Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc. -
1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/advanced-spark.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1
Analyzing Big Data

Sandy Ryza

[Data applications] are like sausages. It is better not to see them being made.
—Otto von Bismarck

« Build a model to detect credit card fraud using thousands of features and billions
of transactions.

« Intelligently recommend millions of products to millions of users.

« Estimate financial risk through simulations of portfolios including millions of
instruments.

« Easily manipulate data from thousands of human genomes to detect genetic asso-
ciations with disease.

These are tasks that simply could not be accomplished 5 or 10 years ago. When peo-
ple say that we live in an age of “big data,” they mean that we have tools for collecting,
storing, and processing information at a scale previously unheard of. Sitting behind
these capabilities is an ecosystem of open source software that can leverage clusters of
commodity computers to chug through massive amounts of data. Distributed systems
like Apache Hadoop have found their way into the mainstream and have seen wide-
spread deployment at organizations in nearly every field.

But just as a chisel and a block of stone do not make a statue, there is a gap between
having access to these tools and all this data, and doing something useful with it. This
is where “data science” comes in. As sculpture is the practice of turning tools and raw
material into something relevant to nonsculptors, data science is the practice of turn-
ing tools and raw data into something that nondata scientists might care about.

Often, “doing something useful” means placing a schema over it and using SQL to
answer questions like “of the gazillion users who made it to the third page in our




registration process, how many are over 25?” The field of how to structure a data
warehouse and organize information to make answering these kinds of questions
easy is a rich one, but we will mostly avoid its intricacies in this book.

Sometimes, “doing something useful” takes a little extra. SQL still may be core to the
approach, but to work around idiosyncrasies in the data or perform complex analysis,
we need a programming paradigm that’s a little bit more flexible and a little closer to
the ground, and with richer functionality in areas like machine learning and statistics.
These are the kinds of analyses we are going to talk about in this book.

For a long time, open source frameworks like R, the PyData stack, and Octave have
made rapid analysis and model building viable over small data sets. With fewer than
10 lines of code, we can throw together a machine learning model on half a data set
and use it to predict labels on the other half. With a little more effort, we can impute
missing data, experiment with a few models to find the best one, or use the results of
a model as inputs to fit another. What should an equivalent process look like that can
leverage clusters of computers to achieve the same outcomes on huge data sets?

The right approach might be to simply extend these frameworks to run on multiple
machines, to retain their programming models and rewrite their guts to play well in
distributed settings. However, the challenges of distributed computing require us to
rethink many of the basic assumptions that we rely on in single-node systems. For
example, because data must be partitioned across many nodes on a cluster, algorithms
that have wide data dependencies will suffer from the fact that network transfer rates
are orders of magnitude slower than memory accesses. As the number of machines
working on a problem increases, the probability of a failure increases. These facts
require a programming paradigm that is sensitive to the characteristics of the under-
lying system: one that discourages poor choices and makes it easy to write code that
will execute in a highly parallel manner.

Of course, single-machine tools like PyData and R that have come to recent promi-
nence in the software community are not the only tools used for data analysis. Scien-
tific fields like genomics that deal with large data sets have been leveraging parallel
computing frameworks for decades. Most people processing data in these fields today
are familiar with a cluster-computing environment called HPC (high-performance
computing). Where the difficulties with PyData and R lie in their inability to scale,
the difficulties with HPC lie in its relatively low level of abstraction and difficulty of
use. For example, to process a large file full of DNA sequencing reads in parallel, we
must manually split it up into smaller files and submit a job for each of those files to
the cluster scheduler. If some of these fail, the user must detect the failure and take
care of manually resubmitting them. If the analysis requires all-to-all operations like
sorting the entire data set, the large data set must be streamed through a single node,
or the scientist must resort to lower-level distributed frameworks like MPI, which are
difficult to program without extensive knowledge of C and distributed/networked
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systems. Tools written for HPC environments often fail to decouple the in-memory
data models from the lower-level storage models. For example, many tools only know
how to read data from a POSIX filesystem in a single stream, making it difficult to
make tools naturally parallelize, or to use other storage backends, like databases.
Recent systems in the Hadoop ecosystem provide abstractions that allow users to
treat a cluster of computers more like a single computer—to automatically split up
files and distribute storage over many machines, to automatically divide work into
smaller tasks and execute them in a distributed manner, and to automatically recover
from failures. The Hadoop ecosystem can automate a lot of the hassle of working
with large data sets, and is far cheaper than HPC.

The Challenges of Data Science

A few hard truths come up so often in the practice of data science that evangelizing
these truths has become a large role of the data science team at Cloudera. For a sys-
tem that seeks to enable complex analytics on huge data to be successful, it needs to
be informed by, or at least not conflict with, these truths.

First, the vast majority of work that goes into conducting successful analyses lies in
preprocessing data. Data is messy, and cleansing, munging, fusing, mushing, and
many other verbs are prerequisites to doing anything useful with it. Large data sets in
particular, because they are not amenable to direct examination by humans, can
require computational methods to even discover what preprocessing steps are
required. Even when it comes time to optimize model performance, a typical data
pipeline requires spending far more time in feature engineering and selection than in
choosing and writing algorithms.

For example, when building a model that attempts to detect fraudulent purchases on
a website, the data scientist must choose from a wide variety of potential features: any
fields that users are required to fill out, IP location info, login times, and click logs as
users navigate the site. Each of these comes with its own challenges in converting to
vectors fit for machine learning algorithms. A system needs to support more flexible
transformations than turning a 2D array of doubles into a mathematical model.

Second, iteration is a fundamental part of the data science. Modeling and analysis typ-
ically require multiple passes over the same data. One aspect of this lies within
machine learning algorithms and statistical procedures. Popular optimization proce-
dures like stochastic gradient descent and expectation maximization involve repeated
scans over their inputs to reach convergence. Iteration also matters within the data
scientist’s own workflow. When data scientists are initially investigating and trying to
get a feel for a data set, usually the results of a query inform the next query that
should run. When building models, data scientists do not try to get it right in one try.
Choosing the right features, picking the right algorithms, running the right signifi-
cance tests, and finding the right hyperparameters all require experimentation. A
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framework that requires reading the same data set from disk each time it is accessed
adds delay that can slow down the process of exploration and limit the number of
things we get to try.

Third, the task isn’t over when a well-performing model has been built. If the point of
data science is making data useful to nondata scientists, then a model stored as a list
of regression weights in a text file on the data scientist’s computer has not really
accomplished this goal. Uses of data recommendation engines and real-time fraud
detection systems culminate in data applications. In these, models become part of a
production service and may need to be rebuilt periodically or even in real time.

For these situations, it is helpful to make a distinction between analytics in the lab
and analytics in the factory. In the lab, data scientists engage in exploratory analytics.
They try to understand the nature of the data they are working with. They visualize it
and test wild theories. They experiment with different classes of features and auxiliary
sources they can use to augment it. They cast a wide net of algorithms in the hopes
that one or two will work. In the factory, in building a data application, data scientists
engage in operational analytics. They package their models into services that can
inform real-world decisions. They track their models’ performance over time and
obsess about how they can make small tweaks to squeeze out another percentage
point of accuracy. They care about SLAs and uptime. Historically, exploratory analyt-
ics typically occurs in languages like R, and when it comes time to build production
applications, the data pipelines are rewritten entirely in Java or C++.

Of course, everybody could save time if the original modeling code could be actually
used in the app for which it is written, but languages like R are slow and lack integra-
tion with most planes of the production infrastructure stack, and languages like Java
and C++ are just poor tools for exploratory analytics. They lack Read-Evaluate-Print
Loop (REPL) environments for playing with data interactively and require large
amounts of code to express simple transformations. A framework that makes model-
ing easy but is also a good fit for production systems is a huge win.

Introducing Apache Spark

Enter Apache Spark, an open source framework that combines an engine for distrib-
uting programs across clusters of machines with an elegant model for writing pro-
grams atop it. Spark, which originated at the UC Berkeley AMPLab and has since
been contributed to the Apache Software Foundation, is arguably the first open
source software that makes distributed programming truly accessible to data
scientists.

One illuminating way to understand Spark is in terms of its advances over its prede-
cessor, MapReduce. MapReduce revolutionized computation over huge data sets by
offering a simple model for writing programs that could execute in parallel across
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hundreds to thousands of machines. The MapReduce engine achieves near linear
scalability—as the data size increases, we can throw more computers at it and see jobs
complete in the same amount of time—and is resilient to the fact that failures that
occur rarely on a single machine occur all the time on clusters of thousands. It breaks
up work into small tasks and can gracefully accommodate task failures without com-
promising the job to which they belong.

Spark maintains MapReduce’s linear scalability and fault tolerance, but extends it in
three important ways. First, rather than relying on a rigid map-then-reduce format,
its engine can execute a more general directed acyclic graph (DAG) of operators. This
means that, in situations where MapReduce must write out intermediate results to the
distributed filesystem, Spark can pass them directly to the next step in the pipeline. In
this way, it is similar to Dryad (http://research.microsoft.com/en-us/projects/dryad/), a
descendant of MapReduce that originated at Microsoft Research. Second, it comple-
ments this capability with a rich set of transformations that enable users to express
computation more naturally. It has a strong developer focus and streamlined API that
can represent complex pipelines in a few lines of code.

Third, Spark extends its predecessors with in-memory processing. Its Resilient Dis-
tributed Dataset (RDD) abstraction enables developers to materialize any point in a
processing pipeline into memory across the cluster, meaning that future steps that
want to deal with the same data set need not recompute it or reload it from disk. This
capability opens up use cases that distributed processing engines could not previously
approach. Spark is well suited for highly iterative algorithms that require multiple
passes over a data set, as well as reactive applications that quickly respond to user
queries by scanning large in-memory data sets.

Perhaps most importantly, Spark fits well with the aforementioned hard truths of data
science, acknowledging that the biggest bottleneck in building data applications is not
CPU, disk, or network, but analyst productivity. It perhaps cannot be overstated how
much collapsing the full pipeline, from preprocessing to model evaluation, into a sin-
gle programming environment can speed up development. By packaging an expres-
sive programming model with a set of analytic libraries under a REPL, it avoids the
round trips to IDEs required by frameworks like MapReduce and the challenges of
subsampling and moving data back and forth from HDFS required by frameworks
like R. The more quickly analysts can experiment with their data, the higher likeli-
hood they have of doing something useful with it.

With respect to the pertinence of munging and ETL, Spark strives to be something
closer to the Python of big data than the Matlab of big data. As a general-purpose
computation engine, its core APIs provide a strong foundation for data transforma-
tion independent of any functionality in statistics, machine learning, or matrix alge-
bra. Its Scala and Python APIs allow programming in expressive general-purpose
languages, as well as access to existing libraries.
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