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1 Quantum Imaging with Continuous Variables

Luigi A. Lugiato, Alessandra Gatti, and Enrico Brambilla

INFM, Dipartimento di Fisica e Matematica, Universita dell'Insubria, Via
Valleggio 11, 22100, Como, Italy luigi.lugiatoQuninsubria.it

1.1 Introduction

A significant fraction of the research activities in the field of quantum imaging
concerns optical Parametric Down-Conversion (PDC). Some basic features of
this phenomenon will be described in this first chapter of the volume, which
deals with the multiphoton regime of the signal-idler field, that one meets in
Optical Parametric Amplifiers (OPA) with medium or high gain or in Optical
Parametric Oscillators (OPO). In this case, the behavior of the system is
naturally described in terms of continuous variables such as field intensity
or field quadratures. On the other hand, in the (very) low gain regime of
the OPA, one detects coincidences between signal and idler photons and a
significant part of the literature on quantum imaging deals with this case, as
illustrated in the review article [1].

The first part of this chapter, which is based on the tutorial delivered by
one of us (L. A. L.) in the Cargeése workshop,! will introduce some key con-
cepts in the continuous variable description, such as squeezing in quadratures
and in photon number difference, or entanglement between quadratures, and
the basic connection between this entanglement and squeezing. This will be
done with the help of two paradigmatic models, one including a single radia-
tion mode and the other with two modes. The second part of this chapter will
be devoted to the spatially multimode configuration that one meets in OPAs
and in degenerate OPOs. We will discuss the topic of spatially multimode
squeezing or local squeezing and of spatial correlations, with the related near-
field/far-field interest for quantum imaging, namely the detection of weak
amplitude or phase objects duality in type-I OPA/OPO. Then we will turn
our attention to two subjects of direct detection beyond the standard quan-
tum limit and the image amplification by parametric down-conversion. The
results illustrated in this chapter have been obtained prior to QUANTIM,
whereas new results are included in Chapter 2 and Chapter 5.

! “Imaging at the Limits,” ESF /PESC Exploratory Workshop, Cargése (Corsica),
France, 5-11 September 200..
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1.2 The Concepts of Squeezing and of Entanglement
with Continuous Variables, and Their Intrinsic
Connection

1.2.1 Prototype Model I

in

out

Fig. 1.1. “Input-output box” for an OPA (or an OPO below threshold) in the
degenerate single-mode configuration.

Let us consider the “black box” in Fig. 1.1, with an input mode and an
output mode associated with annihilation and creation operators a;, and al

mn
and Goy¢, al respectively, with

out?
[amal] =1, [aowsdbu) = 1. (1.1)
Let us assume the input-output relation
dout = Udin + Val,, (1.2)

with coefficients U and V obeying the condition
Ul ~vI* =1, (1.3)

which ensures the unitarity of transformation (1.2). In the following we take
for definiteness
U =coshg, V =sinhg . (1.4)

A concrete realization of (1.2) is given, for example, by a degenerate OPA
(or OPO below threshold) in the single-mode configuration.

Case 1

If a;, is in a coherent state | @), so that the mean value of a;, is (a;n) = o,
one has from (1.2)
{Gout) = U+ Va". (1:5)

Hence the system behaves as a phase-sensitive amplifier/deamplifier; for ex-
ample, if « is real one has amplification:

(Gou)* = U+ VI*al® = ¥ |{am)[* , (1.6)
whereas if « is imaginary one has deamplification:

(Gout)® = [U = V|* |of® = 72 |(ain) | . (1.7)
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Case 2

Let us focus, instead, on the case that ai, is in the vacuum state | 0). If we
consider the quadrature components of the input and output modes

5. 4 af . G — i)

Xiu = w ) Y'm = E‘ﬂ'# ) (18)
: -t ) At

-~ a ~ a —a

Ko = g‘%_ﬂ& , Vo = Lm_w , (1.9)

the input-output relation (1.2) can be rephrased in the following form,
Xout = egXin » }}out E= e_g)}in ) (1.10)

hence the quadrature component X is amplified whereas the quadrature com-
ponent Y is deamplified, and from Fig. 1.2 one sees that the input vacuum
state is transformed into a squeezed vacuum state, with squeezing in the
quadrature component Y. By varying the phase of the coefficients U and V
with respect to the choice (1. 4), the squeezing can be produced in an ar-
bitrary quadrature component Xp = 1 /2(ae¢ + atei?), for any value of 6.

IN STATE OUT STATE
Yin Yout
e | =
|
X in Xaut

Fig. 1.2. The input-output relation (1.2) with (1.4) transforms the vacuum state
into a squeezed vacuum state, with squeezing in the quadrature component Y.

1.2.2 Prototype Model II

Let us now consider the black box in Fig. 1.3, with two input and two output
modes such that

[é’i,ilh 7, m] = 51] ) [a‘L outy @ jout] —— (sij (11] = 1!2) ’ (111)
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and the input-output relations

s _rra -t
d1out = Ura1in + Vlazin )

doout = U2aoin + VQdIin s (1.12)
with the unitarity condition
Ul - vil* =1, UiVz = UzV; . (1.13)

In the following we take for definiteness

Uy =U;=U =coshg, Vi =Vo =V =sinhg. (1.14)
alin alout
—_—
_—s
Ayin A2 out

Fig. 1.3. Input-output box for an OPA (or an OPO below threshold) in the non-
degenerate two-mode configuration.

A realization of (1.14) is given by a nondegenerate OPA (or OPO below
threshold) in the two-mode regime.

Case 1

Let us consider the case when the mode ai, is in a coherent state | a),
whereas the mode as;, is in the vacuum state | 0). One obtains from (1.12)

(&lout> = Uy, (d20ut> = VQQ*, (115)

so that
{810ut)|? = (cosh? g) laf® = (cosh? g) |(@1n)|? (1.16)
|{@20ut)|® = (sinh? g) |a|* = (sinh? g) [{azin)|” - (1.17)

Hence mode 1 is amplified in a phase-insensitive way, whereas mode 2 is
generated from the vacuum, and in the large-gain limit, g — oo, it becomes
equally as strong as mode 1.
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Case 1/

Let us assume that both modes @i, and @i, are in the same coherent state
| @). In this case one has from (1.12), (1.14),

(d1out) = (a2out) = cosh ga + sinh ga’, (1.18)

so that as in (1.5), one has a phase-sensitive amplification/deamplification.
One can prove that, in general, phase-insensitive amplification degrades the
signal-to-noise ratio at least by a factor 2, whereas phase-sensitive amplifica-
tion can preserve the signal-to-noise ratio (noiseless amplification) [1].

Case 2

Let us consider the case when both a1j, and agi, are in the vacuum state.
The most interesting situation is in the limit of large g, in which U; ~ V; ~
e?/2 (i =1,2), so that by indicating U = e9/2 relations (1.12) reduce to

a'lout =% U&Iin =+ Udgin 3

dzout = Udgin + Udl, , (1.19)
hence by introducing the quadrature components of the input-output modes
- ot 5 ~t
5 @jin +aj; - Gjin — G;; ,
= —712, Yp=——pt=, Fi=13 (1.20)
~ ,a[- - AT
5 a; +a; A Qjout — @
b PR e P, TS i PO
2 2i
one obtains the relations
XZout = Xlout ) Y’2out = "?vlout . (1.21)

Therefore, if one measures, for example, X lout and f’xoun one can immedi-
ately infer the values of Xo5,y and f’bout- This is precisely the phenomenon
of quantum entanglement, and this is completely identical to the original
Einstein—Podolsky—Rosen paradox [2|, which was formulated for the position
z and momentum p of two particles. This formulation of the EPR paradox
for continuous variables X and Y (quadrature components) of two radia-
tion modes was introduced in [3] taking into account the uncertainties in the
measurements of X and Y. This was experimentally verified in [4].

1.3 Intrinsic Relation Between Squeezing and
Entanglement

In this section we show that there is a basic connection between the two
paradigmatic models just discussed, which amounts to an intrinsic relation
between entanglement and squeezing.
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Let us consider a 50/50 beamsplitter (Fig. 1.4). One demonstrates that:

— If a; and ap are EPR entangled beams (in the sense defined before)
then the beam by is squeezed in the Y quadrature and the beam by is squeezed
in the X quadrature.

— And vice versa.

Proof

Let us consider the input-output relations of the beamsplitter

- ay + ay ~ ap — a

b, = . by = . 1.22
Next, let us assume that a; and a, are the entangled output modes @4, and
Q20ut Of model 11, so that

a1 = Udyin + Valy,
a2 = Udigin + Valy, , (1.23)

where @;i, and agi, are in the vacuum state. By inserting (1.23) into (1.22)
we obtain

by =Uf, + Vfl, (1.24)
by =Ufy - Vi, (1.25)

where modes f1 and fg are defined as
:  Qlin + Q2in @2in — Qlin

fl:—\/ﬁ—‘ fa= 7

Because a; and d, are in the vacuum state, the same is true for fl and fz
Now one notes immediately that (1.24) is identical to the prototype model
I (1.2), hence we can conclude that by is squeezed with respect to the Y
quadrature. On the other hand, one sees that (1.25) has the same form of

Z\I/b

(1.26)

Fig. 1.4. A 50/50 beamsplitter converts modes a; and a; into modes b, and b;.

model I (1.2) except that V is replaced by —V. One can easily prove that
this feature implies that by is squeezed with respect to the X quadrature.
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1.4 Spatially Multimode Parametric Down-Conversion:
Some Topics in Quantum Imaging

1.4.1 Spatially Multimode Versus Single-Mode Squeezing: Optical
Parametric Down-Conversion of Type-I

In almost all literature on squeezing one considers single-mode squeezing. If
one wants to detect a good level of squeezing, the local oscillator must be
matched to the squeezed spatial mode and, in addition, it is necessary to
detect the whole beam. If one detects only part of the beam, the squeezing
is immediately degraded, because a portion of a mode necessarily involves
higher-order modes, in which squeezing is absent. What we can call local
squeezing (i.e., squeezing in small regions of the transverse plane) can be ob-
tained only in the presence of spatially multimode squeezing, (i.e., squeezing in
a band of spatial miudes). This has been predicted by Sokolov and Kolobov for
a traveling-wave optical parametric amplifier (OPA) [6,7] and by our group
for an optical parametric oscillator (OPO) [8,9]. Let us dwell a moment, for

P ety (Beges o o

LF R

g w, Q

ol

Fig. 1.5. (a) Scheme for parametric down-conversion of type-I. (b) Parametric
amplification of a plane-wave; g is the component of the wave-vector in the plane
orthogonal to the direction of propagation of the pump.

g ©+Q l i

example, on the case of the OPA of type-I (Fig. 1.5a), in which one has a
slab of x'?) material that is pumped by a coherent plane wave of frequency
2ws. A fraction of the pump photons is down-converted into signal-idler pho-
ton pairs, which are distributed over a broad band of temporal frequencies
around the degenerate frequency ws. For each fixed temporal frequency, the
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photon pairs are distributed over a band of spatial frequencies labeled by the
transverse component g of the wave-vector.

If, in addition to the pump field, we inject a coherent plane wave with
frequency w, + 2 and the transverse wave-vector g (Fig. 1.5b), in the output
we have a signal wave that corresponds to an amplified version of the input
wave, and for this reason the system is called an optical parametric amplifier.
Because of the pairwise emission of photons, there is also an idler wave that,
close to degeneracy, is symmetrical with respect to the signal wave. Referring
to the case in which only the pump is injected, two regimes can be distin-
guished. One is that of pure spontaneous parametric down-conversion, as in
the case of a very thin crystal. In this case coincidences between partners of
single photon pairs are detected. The other is that of dominant stimulated
parametric down-conversion, in which a large number of photon pairs at a
time is detected. In this chapter we will focus on the second case, whereas
the first case will be considered in Chapter 2.

On a more formal ground, let us consider the down-converted signal-idler
field emitted close to the degenerate frequency ws. Let us denote by ai,(x, t)
the signal-idler complex amplitude envelope operator at the input endface of
the crystal slab, and by @out (2, t) the envelope operator at the output endface;
t indicates time and x = (z,y) is the coordinate vector in the endfaces. We
expand @i, and oyt in Fourier modes in space and time:

din(mat) = /dQ/dQ din(q,g)eiq@—i()t ) (127)

Beacl, ) = / dg / 02 Gous(g, 2)eiT=—i2t (1.28)

One can demonstrate that, in the linear regime of an undepleted pump, the
following input-output relations hold [9],

dout (@, 2) = U(q, )ain(q, 2) + V(q, 2)a}, (—q, - 2) , (1.29)
dout(—q, _-Q) = U("‘Qa _Q)&in(_q‘ _‘Q) + V(—qv _Q)af (qv -Q) ) (130)

in

where the expressions of U(q, §2) and V(g, §2) are given in [9]. We can note
immediately that, for each fixed q, 2, Egs. (1.29) have the same form of the
prototype model II (1.12). Hence the results of Section 1.2.2 hold for this
case; for example, Fig. 1.5b corresponds to case 1 of Section 1.2.2. The case
of parametric down-conversion of type-II will be considered in Chapter 5.

1.4.2 Near-Field/Far-Field Duality in Type-I OPAs

We want to illustrate the key spatial quantum properties of the field emitted
by an OPA of type-I, in the linear regime of negligible pump depletion, or by
an OPO below threshold.

In the near field (see Fig. 1.6) one has the phenomenon of spatially multi-
mode squeezing or local squeezing discussed in Section 1.4.1. A good level of
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squeezing is found, provided the region that is detected has a linear size not
smaller than the inverse of the spatial bandwidth of emission in the Fourier
plane. If, on the other hand, one looks at the far field (which can be reached,
typically, by using a lens as shown in Fig. 1.6) one finds the phenomenon
of spatial entanglement between small regions located symmetrically with re-
spect to the center. Precisely, if one considers two symmetrical pixels 1 and
2 (Fig. 1.7a), the intensity fluctuations in the two pixels are very well cor-
related or, equivalently, the fluctuations in the intensity difference between
the two pixels are very much below the shot-noise level [10,11]. Precisely,

Fig. 1.6. Illustration of the near-field far-field duality; f is the focal plane of the
lens. Not shown is the pump field of frequency 2w, and the nonlinear slab.

let us consider the number of photons N; and ./V2 detected in pixel 1 and 2,
respectively, and the associated fluctuations ON; = N (N; ) (i=1,2). For
symmetry reasons one has that (N;) = (Na), ((6N1)?) = ((51\72)2). In the
limit of the plane-wave pump, the photon number difference N_ = Ny — N,
turns out to be fluctuationless [10]; that is,

((6N_)?y =0. (1.31)

Basically, one has that N; = Ny; that is, by measuring N, one can infer the
value of Ny (entanglement). This result expresses in the most emphatic way
the emission of signal and idler photons in pairs, and follows from the perfect
correlation between the photons in 1 and 2. As a matter of fact one has

((BN-)%) = ((6N1)%) + ((6N2)%) — 2(8 N8N ; (1.32)

because ((6N;)2) = ((6N)?) one has from (1.31) that the normalized corre-

lation

= (N1 a) =1, (1.33)

VN2 (R)?)
which means perfect correlation. For the realistic case of a Gaussian pump,
the fluctuations of N_ are below the shot-noise level; [10] that is

((BN_)%) < (Ny) = (Nn) + (M) . (1.34)
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Fig. 1.7. Intensity distribution in the far field for a single shot of the pulsed pump
field. (a) Numerical simulations. The waist of the pump beam is 1000 pm, 300 pm,
150 gm in the three frames from the top to the bottom, respectively. N;, X, Yz,
(i = 1,2) denote the photon numbers and the quadrature component measured in
the two pixels 1 and 2, respectively. (b) Experimental observation by Devaux and
Lantz at University of Besangon (see [13]).

Because this phenomenon arises for any pair of symmetrical pixels, we call it
spatial entanglement. The same effect occurs also for quadrature components,
because in the two pixels the fluctuations of the quadrature component X
are almost exactly correlated, and those of the quadrature component Y are
almost exactly anticorrelated [12]. The case of perfect correlation/anticorrela-
tion occurs in the limit of the plane-wave pump, in which relations (1.21)
hold.

The minimum size of the symmetrical small regions, among which one
finds spatial entanglement, is determined by the finite aperture of optical
elements, and is given, in the paraxial approximation, by Af/a, where X is
the wavelength, f is the focal length of the lens and a is the aperture of
optical elements (e.g., the lens aperture; Fig. 1.6). In a more realistic model
of the OPA, the finite waist of the pump field must be taken into account. In
this case the minimum size of the regions where entanglement is detectable
in the far field is determined by the pump waist.

The spatial entanglement of intensity fluctuations in the far field is quite
evident even in single shots (the pump field is typically pulsed). Figure 1.7a
shows a numerical simulation in a case of noncollinear phase matching at the



