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Introducing People of ACM—An Interview
with David Patterson

David Andrew Patterson (born on November 16, 1947) is an American computer pioneer
and academic who has held the position of Professor of Computer Science at the University of
California, Berkeley since 1977. David Patterson is the founding director of the Parallel
Computing Laboratory (PAR Lab) at University of California, Berkeley, which addresses the
multicore challenge to software and hardware. He founded the Reliable, Adaptive and
Distributed Systems Laboratory (RAD Lab), which focuses on dependable computing systems
designs. He led the design and implementation of RISC I, likely the first VLSI Reduced
Instruction Set Computer.

A former ACM president, Patterson chaired ACM’s Special Interest Group in Computer
Architecture (SIGARCH), and headed the Computing Research Association (CRA). He is
a Fellow of ACM, IEEE, the Computer History Museum, and the American Association
for the Advancement of Science, and a member of the National Academy of Engineering
and the National Academy of Sciences. He received the Eckert-Mauchly Award from
ACM and IEEE-CS, and ACM’s Distinguished Service and Karl V. Karlstrom Outstanding
Educator Awards. He served on the Information Technology Advisory Committee for the US
President (PITAC).

Patterson is a graduate of the University of California at Los Angeles (UCLA), where he
earned his A.B., M.S. and Ph.D. degrees. He has consulted for Hewlett Packard, (HP), Digital
Equipment (now HP), Intel, Microsoft, and Sun Microsystems, and is on the technical
advisory board of several companies.

Patterson is noted for his pioneering contributions to RISC processor design, having
coined the term RISC, and by leading the Berkeley RISC project. He is also noted for his
research on RAID disks.
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His book on computer architecture (co-authored with John L. Hennessy) is widely used
in computer science education. Patterson is a Fellow of the American Association for the
Advancement of Science.

He is an important proponent of the concept of Reduced Instruction Set Computer and
coined the term “RISC”. He led the Berkeley RISC project from 1980 and onwards along
with Carlo H. Sequin, where the technique of register windows was introduced. He is also one
of the innovators of the Redundant Arrays of Independent Disks (RAID) (in collaboration
with Randy Katz and Garth Gibson), and Network of Workstations (NOW) (in collaboration
with Eric Brewer and David Culler).

He co-authored six books, including two with John L. Hennessy on computer architecture:
Computer Architecture: A Quantitative Approach (5 editions—Ilatest is ISBN 0-12-383872-X)
and Computer Organization and Design: the Hardware/Software Interface (4 editions—Iatest
is ISBN 0-12-374493-8). They have been widely used as textbooks for graduate and
undergraduate courses since 1990.

His work has been recognized by about 35 awards for research, teaching, and service,
including Fellow of the Association for Computing Machinery (ACM) and the Institute of
Electrical and Electronics Engineers (IEEE) as well as by election to the National Academy of
Engineering, National Academy of Sciences, and the Silicon Valley Engineering Hall of
Fame.

In the February 28, 2013 second installment of Introducing People of ACM interview,
David Patterson, director of the Parallel Computing Lab at UC Berkeley and former ACM
president, answers questions, revealing his insight into the pervasive and booming expansion
of big data now inherent in the computing technology field.

He describes his successes over 35 years as researcher and professor at Berkeley as the
embodiment of projects developed by grad students that would later be adapted into
commercial products, most notably Reduced Instruction Set Computers (RISC)

* Redundant Array of Inexpensive Disks (RAID)

* Networks of Workstations (NOW)

In the interview, Patterson discusses how his AMP lab—algorithms, machine, people—
will address the expectations of big data analytics in the field of health care, and in particular,
cancer research through the intersection of machine learning, cloud computing, and crowd
sourcing.

Finally, Patterson advises prospective data analysis technologists to look into the study
of statistics and machine learning, as well as taking courses in databases and operating
systems, all the while taking part in development of software as a service agile programming
languages such as ruby on rails and Django.

As a researcher, professor, and practitioner of computer science, how have these
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overlapping roles influenced both your career and the direction of computing technologies?

My research style is to identify critical questions for the IT industry and gather
interdisciplinary groups of faculty and graduate students to answer them as part of a five-year
project. The answer is typically embodied in demonstration systems that are later mirrored in
commercial products. In addition, these projects train students who go on to successful
careers.

When 1 look in the rear view mirror at my 35 years at Berkeley, | see some successes.
My best-known projects were all born in Berkeley graduate classes:

* Reduced Instruction Set Computers (RISC): The R of the ARM processor stands for
RISC. ARM is now the standard instruction set of Post PC devices, with nearly 9B ARM
chips shipped last year vs. 0.3B x86 chips.

* Redundant Array of Inexpensive Disks (RAID): Virtually all storage systems offer
some version of RAID today; RAID storage is a $25B business today.

Networks of Workstations (NOW): NOW showed that Internet services were an excellent
match to large sets of inexpensive computers connected over switched local area networks,
offering low cost, scalability, and fault isolation. Today, these large clusters are the hardware
foundation of search, video, and social networking.

The research shapes the teaching too. The RISC research led to the graduate textbook
Computer Architecture: A Quantitative Approach and the undergraduate textbook Computer
Organization and Design: The Hardware-Software Interface, both co-authored with John
Hennessy of Stanford University.

How is your AMP Lab involved in addressing the challenges of Big Data research? What
can we expect over the next decade in the development of Big Data research and its impact on
cancer tumor genomics and other health care issues?

Working at the intersection of three massive trends: powerful machine learning, cloud
computing, and crowd sourcing, the AMP Lab integrates Algorithms, Machines, and People
to make sense of Big Data. We are creating a new generation of analytics tools to answer deep
questions over dirty and heterogeneous data by extending and fusing machine learning,
warehouse-scale computing, and human computation.

We validate these ideas on real-world problems, such as cancer genomics. Recently,
biologists discovered that cancer is a genetic disease, caused primarily by mutations in our
DNA. Changes to the DNA also cause the diversity within a cancer tumor that makes it so
hard to eradicate completely. The cost of turning pieces of DNA into digital information has
dropped a hundredfold in the last three years. It will soon cost just $1,000 per individual
genome, which means we could soon afford to sequence the genomes of the millions of
cancer patients.

We need to build fast, efficient software pipelines for genomic analysis to handle the
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upcoming tsunami of DNA data that will soon be flowing from these low-cost sequencing
machines. Then we need a safe place to store the results. If we could create a warehouse that
stores the DNA signatures of millions of cancer patients, tracks how the tumors change over
time, and records both the treatments and the outcomes, we could create a gold mine of cancer
fighting information. By participating, computer scientists can help ensure that such
a “Million Genome Warehouse™” is dependable, cost effective, and secure, and privacy
protective.

We can’t yet know how many cancer patients the faster software pipelines and
Million Genome Warehouses will help—it could be tens, hundreds, thousands, or millions
each year—but the sooner we create these tools, the more lives we can save.

What advice would you give to budding technologists who are considering careers in
computing in this burgeoning new era in data analysis?

Study statistics and machine learning along with traditional CS courses like databases
and operating systems.

As Big Data will surely be in the cloud, practice developing for Software as a Service
(SaaS) deployed in the cloud rather the shrink-wrap software aimed at ground-bound PCs.
Since Agile development is a perfect match for fast-changing SaaS apps, take a modern
software engineering course to learn about Agile as well as productive programming
environments for SaaS apps like Ruby on Rails or Python and Django.

<
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@~ Exercise A

1. Match the words from the passage in Column A with the right explanations in

Column B.

A
(1) academic
(2) advisory
(3) be noted for
(4) proponent
(5) pervasive

(6) booming F. in particular

(7) inherent

(8) notably H. giving advice

(9) overlap 1. be well known for

(10) integrate

2. Choose a word or phrase from Column A to complete the following sentences, change

the form if necessary.

(1) Numbering 3.1 million, the Bambara has their own writing system and their

sculpture in wood and metal.

B

A. a person who pleads for a cause or propounds an idea
B. extend over and cover a part of

C. associated with academia or an academy

D. very successful and profitable

E. spreading or spread around

G. make into a whole or make part of a whole

J. in the nature of something though not readily apparent




6 (ESRIRMEWHEBHIR

(2) She finally succeeded in getting the good salary job just because she already has good
qualifications under her belt.

(3) This book explodes some myths about how to educate infants and children in the
Middle Ages.
(4) Industry, frugality, kindness, hospitality are the qualities of the Chinese nation.

(5) Farmers abandoned the land for more lucrative (W#k1)) employment in the
construction industry.

(6) As many of my Boston University swimmers will attest, | have never been a major
of Laughlin’s theories.

(7) Shops not only run special  services for the newcomer, but also offer consumers bits
and pieces which they can assemble at home.

(8) The world of entertainment, most  Hollywood, has also contributed to the popularization

of English.
(9) We should help the new-comers quickly into the community.
(10) Obviously, the two sets of policies and can complement each other.
@ Exercise B

Answer the following questions.

(1) What is RAD Lab? What’s it mainly for?

(2) Among the 35 awards Patterson got for research, teaching and service, how many awards
are mentioned in the passage?

(3) What are Patterson’s pioneering contributions to RISC processor design?

(4) What do you know about Patterson’s research characteristics in computer science?

(5) Does Patterson’s research in computer science shape his career as a professor? Why?

(6) In the sentence “We validate these ideas on real-world problems, such as cancer genomics.
Recently, biologists discovered that cancer is a genetic disease, caused primarily by mutations
in our DNA.”" What does “these ideas” refer to?

(7) What can “Million Genome Warehouse™ do in Patterson’s idea?

(8) How many cancer patients will be cured with the Big Data research?

(9) What does Patterson advise data analysis technologists to do in the interview?

(10) Do you think the Big Data research will have a great impact on cancer cure and other

health care issues?

& Exercise C

Translate the following paragraph into English.
3 [ [ bR LA A R] (IBM) 3 H A—% 48 “NuTec B¢ (A YrRla= 20 wl ok
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&= Exercise D

Write a short summary based on the article you have read in Reading and Practice,
using as many new words and phrases you have learnt as possible. Your writing should
be no less than 120 words.

/4% . Reading and Comprehension

Fundamentals of Computer Design

Computer technology has made incredible progress in the roughly 60 years since the first
general-purpose electronic computer was created. Today, less than $500 will purchase a
personal computer that has more performance, more main memory, and more disk storage
than a computer bought in 1985 for 1 million dollars. This rapid improvement has come both
from advances in the technology used to build computers and from innovation in computer
design. Although technological improvements have been fairly steady, progress arising from
better computer architectures has been much less consistent. During the first 25 years of
electronic computers, both forces made a major contribution, delivering performance
improvement of about 25% per year. The late 1970s saw the emergence of the microprocessor.
The ability of the microprocessor to ride the improvements in integrated circuit technology
led to a higher rate of improvement—roughly 35% growth per year in performance.

This growth rate, combined with the cost advantages of a mass-produced microprocessor,
led to an increasing fraction of the computer business being based on microprocessors. In
addition, two significant changes in the computer marketplace made it easier than ever before
to be commercially successful with a new architecture. First, the virtual elimination of
assembly language programming reduced the need for object-code compatibility. Second, the
creation of standardized, vendor-independent operating systems, such as UNIX and its clone,
Linux, lowered the cost and risk of bringing out a new architecture. These changes made it
possible to develop successfully a new set of architectures with simpler instructions, called
RISC (Reduced Instruction Set Computer) architectures, in the early 1980s. The RISC-based

machines focused the attention of designers on two critical performance techniques, the
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exploitation of instruction level parallelism (initially through pipelining and later through
multiple instruction issue) and the use of caches (initially in simple forms and later using
more sophisticated organizations and optimizations). The RISC-based computers raised the
performance bar, forcing prior architectures to keep up or disappear. The Digital Equipment
Vax could not, and so it was replaced by a RISC architecture. Intel rose to the challenge,
primarily by translating x86 (or 1A-32) instructions into RISC-like instructions internally,
allowing it to adopt many of the innovations first pioneered in the RISC designs. As transistor
counts soared in the late 1990s, the hardware overhead of translating the more complex x86
architecture became negligible.

Figure 1 shows that the combination of architectural and organizational enhancements
led to 16 years of sustained growth in performance at an annual rate of over 50%—a rate that
is unprecedented in the computer industry. The effect of this dramatic growth rate in the 20th
century has been twofold. First, it has significantly enhanced the capability available to
computer users. For many applications, the highest-performance microprocessors of today
outperform the supercomputer of less than 10 years ago.

10;000 Intel XCOI! 3.6GHz 4-bit Intel XCOH 3.,6GHz

AMD Opteron 2.2GHz

Intel Pentium 4,3.0 GHz

AMD Athlon,1.6GHz

Intel Pentium [1,1.0GHz
Alpha 21264A,0.7GHz
HBEIY s msiesestos it Alpha 21264,0.6GHz

Alpha 21164,0. GG:I}/ 993

g Alpha 21164,0.5GHz s~ 649

2 ’

= 481

g 280

: 11170 S 52 M7 - s
> of

T HP PA-RISC,0.05GHz

§ IBM RS6000/540 P

~§ MIPS M2000

T

w7
ot
pes
ar?
P
P

o
Pei
o

‘ "1 ‘,VAX-11/785
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Figure 1 Growth in processor performance since the mid-1980s

This chart plots performance relative to the VAX 11/780 as measured by the SPECint
benchmarks. Prior to the mid-1980s, processor performance growth was largely technology
driven and averaged about 25% per year. The increase in growth to about 52% since then is
attributable to more advanced architectural and organizational ideas. By 2002, this growth led
to a difference in performance of about a factor of seven. Performance for floating-point-

oriented calculations has increased even faster. Since 2002, the limits of power, available
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instruction-level parallelism, and long memory latency have slowed uniprocessor performance
recently, to about 20% per year. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different
versions of SPEC (e.g., SPEC92, SPEC95, and SPEC2000).

Second, this dramatic rate of improvement has led to the dominance of microprocessor-based
computers across the entire range of the computer design. PCs and Workstations have emerged as
major products in the computer industry. Minicomputers, which were traditionally made
from off-the-shelf logic or from gate arrays, have been replaced by servers made using
microprocessors. Mainframes have been almost replaced with multiprocessors consisting of small
numbers of off-the-shelf microprocessors. Even high-end supercomputers are being built with
collections of microprocessors. These innovations led to a renaissance in computer design,
which emphasized both architectural innovation and efficient use of technology improvements.
This rate of growth has compounded so that by 2002, high-performance microprocessors
are about seven times faster than what would have been obtained by relying solely on
technology, including improved circuit design.

However, Figure 1 also shows that this 16-year renaissance is over. Since 2002,
processor performance improvement has dropped to about 20% per year due to the triple
hurdles of maximum power dissipation of air-cooled chips, little instruction-level parallelism
left to exploit efficiently, and almost unchanged memory latency. Indeed, in 2004 Intel
canceled its high-performance uniprocessor projects and joined IBM and Sun in declaring that
the road to higher performance would be via multiple processors per chip rather than via
faster uniprocessors. This signals a historic switch from relying solely on instruction level
parallelism (ILP), the primary focus of the first three editions of this book, to thread-level
parallelism (TLP) and data-level parallelism (DLP), which are featured in this edition.
Whereas the compiler and hardware conspire to exploit ILP implicitly without the
programmer’s attention, TLP and DLP are explicitly parallel, requiring the programmer to
write parallel code to gain performance. People need to know about the architectural ideas and
accompanying compiler improvements that made the incredible growth rate possible in the
last century, the reasons for the dramatic change, and the challenges and initial promising
approaches to architectural ideas and compilers for the 21st century. At the core is a
quantitative approach to computer design and analysis that uses empirical observations of
programs, experimentation, and simulation as its tools. The approach will work for
explicitly parallel computers of the future just as it worked for the implicitly parallel
computers of the past.

= Defining Computer Architecture

The task the computer designer faces is a complex one: Determine what attributes are

important for a new computer, then design a computer to maximize performance while
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staying within cost, power, and availability constraints. This task has many aspects, including
instruction set design, functional organization, logic design, and implementation. The
implementation may encompass integrated circuit design, packaging, power, and cooling.
Optimizing the design requires familiarity with a very wide range of technologies, from
compilers and operating systems to logic design and packaging.

In the past, the term computer architecture often referred only to instruction set design.
Other aspects of computer design were called implementation, often insinuating that
implementation is uninteresting or less challenging. We believe this view is incorrect. The
architect’s or designer’s job is much more than instruction set design, and the technical
hurdles in the other aspects of the project are likely more challenging than those encountered
in instruction set design. We’ll quickly review instruction set architecture before describing
the larger challenges for the computer architect.

=D Instruction Set Architecture

We use the term instruction set architecture (ISA) to refer to the actual programmer
visible instruction set in this book. The ISA serves as the boundary between the software and
hardware. This quick review of ISA will use examples from MIPS and 80 x 86 to illustrate the
seven dimensions of an ISA.

1. Class of ISA—Nearly all ISAs today are classified as general-purpose
register architectures, where the operands are either registers or memory locations.

The 80 x 86 has 16 general-purpose registers and 16 that can hold floating point

data, while MIPS has 32 general-purpose and 32 floating-point registers (see Figure

2). The two popular versions of this class are register-memory ISAs such as the

80x86, which can access memory as part of many instructions, and load-store 1ISAs

such as IPS, which can access memory only with load or store instructions. All
recent ISAs are load-store.

2. Memory addressing—Virtually all desktop and server computers, including
the 80x86 and MIPS, use byte addressing to access memory operands. Some
architectures, like MIPS, require that objects must be aligned . An access to an
object of size s bytes at byte address 4 is aligned if 4 mod s =0. The 80 x 86
does not require alignment, but accesses are generally faster if operands are
aligned.

3. Addressing modes—In addition to specifying registers and constant
operands, addressing modes specify the address of a memory object. MIPS
addressing modes are Register, Immediate (for constants), and Displacement,
where a constant offset is added to a register to form the memory address. The
80 x 86 supports those three plus three variations of displacement: no register

(absolute), two registers (based indexed with displacement), two registers
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where one register is multiplied by the size of the operand in bytes (based
with scaled index and displacement). It has more like the last three, minus
the displacement field: register indirect, indexed, and based with scaled

index.
Name Number Use Preserved across a call?
$zero 0 The constant value 0 N.A.
$at I Assembler temporary No
$v0-$v1 53 Values for function results and expression No
evaluation
$a0-$a3 4-7 Arguments No
$10-$17 8-15 Temporaries No
$50-$s7 16-23 Saved temporaries Yes
$18-5t9 24-25 Temporaries No
$k0-$k1 26-27 Reserved for OS kernel No
$gp 28 Global pointer Yes
$sp 29 Stack Pointer Yes
$fp 30 Frame pointer Yes
Sra 31 Return address Yes

Figure 2 MIPS registers and usage convention

In addition to the 32 general purpose registers (RO-R31), MIPS has 32 floating-point
registers (FO—F31) that can hold either a 32-bit single-precision number or a 64-bit double-precision
number.

4. Types and sizes of operands—ILike most ISAs, MIPS and 80 x 86 support
operand sizes of 8-bit (ASCII character), 16-bit (Unicode character or half word),
32-bit (integer or word), 64-bit (double word or long integer), and IEEE 754
floating point in 32-bit (single precision) and 64-bit (double precision). The 80 x 86
also supports 80-bit floating point (extended double precision).

5. Operations—The general categories of operations are data transfer,
arithmetic logical, control (discussed next), and floating point. MIPS is a simple and
easy-to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2006. The 80x86 has a much richer and larger set of
operations.

6. Control flow instructions—Virtually all ISAs, including 80x86 and MIPS,
support conditional branches, unconditional jumps, procedure calls, and returns.
Both use PC-relative addressing, where the branch address is specified by an
address field that is added to the PC. There are some small differences. MIPS



