PEARSON

C

Primer Plus

RXhR ()

[ZE] Stephen Prata &

C Primer Plus (6th Edition)

rimer Plus

55 6 kR
R hiR ()

[28] Stephen Prata &

Primer Plus (6th Edition)

A B iR R 4t

d x

B 3%

12 Storage Classes, Linkage, and Memory Management
E12E HFHEEH., gREANGEER

Storage Classes / 725
Scope / 1EFE,
Linkage / ##
Storage Duration / F7f#&#A
Automatic Variables / [Zh7E &
Register Variables / ZFfF a8t
Static Variables with Block Scope / H/E B AL E
Static Variables with External Linkage / #M& MBS E
Static Variables with Internal Linkage / A#H@EEHN AT E
Multiple Files / %3
Storage-Class Specifier Roundup / 7% 51 6 B #F
Storage Classes and Functions / 7742 51| 1 pR %X
Which Storage Class? / 7725 5l B £ £
A Random-Number Function and a Static Variable / FEHLEREFNFF S &
Roll’Em / #&F
Allocated Memory: malloc () and free() / FELAAF: malloc() fl free()
The Importance of free () / free () BB B/
The calloc () Function/calloc () BR¥K
Dynamic Memory Allocation and Variable-Length Arrays / 317 A7 EC AR K504
Storage Classes and Dynamic Memory Allocation / 77 f#25 5l Fzh 25 W74 BL
ANSI C Type Qualifiers / ANSI C 2T R E4F
The const Type Qualifier / const B[R E ¥
The volatile Type Qualifier / volatile JSEIFRE &F
The restrict Type Qualifier / restrict ZSRIPREFF

511

511
513
515
516
518
522
522
524
529
530
530
533
534

534

538

543
547
548
548
549

351
552
554
555

Contents

The _Atomic Type Qualifier (C11) / _Atomic KEIPRESRF (CI11)
New Places for Old Keywords / [HIC8 B H 1 &

Key Concepts / =S

Summary / ARE /N

Review Questions / & 1

Programming Exercises / Zi#255~J

13 File Input/Output
E13E XHEmNEH

Communicating with Files / 53C{F#7# 5
What Is a File? / CF A4
The Text Mode and the Binary Mode / SCASAR A1 — 3 il 4 =X
Levels of /0 / /O K45
Standard Files / #7534
Standard I/0 / #34 /O
Checking for Command-Line Arguments / 2541734
The fopen () Function / fopen () B
The getc () and putc () Functions / getc () #l putc () pREL
End-of-File / X445 R
The fclose () Function/ fclose () B4
Pointers to the Standard Files / $& [l 4R X4 HI8 £
A Simple-Minded File-Condensing Program / — > {&] 5. i) SC{4 FE 48 72)7
File I/O: fprintf (), £fscanf (), fgets (), and fputs()
| XA 1/O: fprintf (), fscanf (), fgets () Fll fputs ()
The fprintf () and £scanf () Functions / fprintf () #l £scanf () PR
The fgets () and fputs () Functions / £gets () Fl fputs () PR
Adventures in Random Access: £seek () and ftell ()
/ LR : £seek () fl £tell()
How fseek () and ftell () Work / fseek () Fl ftell () i TIEJRHE
Binary Versus Text Mode / il 4% X f1 SC A48 5
Portability / A] BSAE
The fgetpos () and £setpos () Functions / fgetpos () Fll £setpos () PREL
Behind the Scenes with Standard I/0 / #5#E 1/0 BYALHEL

556
557
558
558
559
561

565

565
566
566
568
568
568
569
570
572
572
574
574
574

576
576
578

579
580
582
582
583

583

Other Standard /0 Functions / HAth#r%E 1/0 pE%K

Contents

584

The int ungetc (int ¢, FILE *£fp) Function/int ungetc(int c, FILE *fp) pR%K 585

The int fflush() Function/ int f£flush () pREL
The int setvbuf () Function/int setvbuf () BREL

Binary 1/Q: £read() and fwrite () / il /O: fread()fll fwrite()

The size_t fwrite() Function/size_t fwrite() PR %
The size t fread() Function/size_ t fread() BR%{
The int feof (FILE *fp) and int ferror (FILE *fp) Functions
/int feof (FILE *£p)#ll int ferror (FILE *fp) pREK
An fread () and fwrite () Example / — /1 FRHl
Random Access with Binary /0 / f— il VO #47BEHLUI[A]
Key Concepts / RKEM
Summary / A<EL/NG5
Review Questions / & >
Programming Exercises / &%~

14 Structures and Other Data Forms
F14E SHHMHEMBERX

585
585
586
588
588

589
589
593
594
595
596
598

601

Sample Problem: Creating an Inventory of Books / 7~|[a] & . GI&EHHFE 601

Setting Up the Structure Declaration / &7 45 ¥4 75 B
Defining a Structure Variable / & X 4575 &
Initializing a Structure / FITRILEEH
Gaining Access to Structure Members / 17 [7] 45 ¥4 Al 57
Initializers for Structures / 4544 FIFI 4R L A%
Arrays of Structures / Z5MI%(4H
Declaring an Array of Structures / 75 B 454 ¥t 40
Identifying Members of an Array of Structures / FRiR45 %4 A9 AL 5
Program Discussion / &Fi1iE
Nested Structures / #xE45H)
Pointers to Structures / 8 [A] 45 H4 FF8 5
Declaring and Initializing a Structure Pointer / 75 B f1%1 # k25 ¥ 8 4
Member Access by Pointer / FH8 %7 [i 5
Telling Functions About Structures / [7] &L 3 5 (5 B

604
604
606
607
607
608
611
612
612
613
615
617
617
618

4

Contents

Passing Structure Members / &% 2518 i 5
Using the Structure Address / 1% 18 4514 i itk
Passing a Structure as an Argument / {53451
More on Structure Features / FHAh&5 %k
Structures or Pointer to Structures? / 45N HIFE 4t o b4
Character Arrays or Character Pointers in a Structure
| G5HE R AT B I A R 6
Structure, Pointers, and malloc () / 4544 . f84#I malloc()
Compound Literals and Structures (C99) / E&FHEBEMLH (C99)
Flexible Array Members (C99) / {#45 BEH B 7 (C99)
Anonymous Structures (C11)/ BE&Z5# (C11)
Functions Using an Array of Structures / {# 44 #4504 #) BR %K
Saving the Structure Contents in a File / 84544 N {747 B 3L
A Structure-Saving Example / #1745 W) 0972 77~ B
Program Points / F2FE 5
Structures: What Next? / #E:NZ5H
Unions: A Quick Look / Bk-& i/
Using Unions / {# HE&
Anonymous Unions (C11)/ BE&¥4 (C11)
Enumerated Types / BZ$EHY
enum Constants / enum % &
Default Values / $RIAfE
Assigned Values / {E
enum Usage / enum i f ik
Shared Namespaces / 3L 5 & FR%S [A]
typedef: A Quick Look / typedef fEjt
Fancy Declarations / HAth & %)75 B
Functions and Pointers / PREUHITE &t
Key Concepts / FERHE&
Summary / A<EE /NG
Review Questions / & >
Programming Exercises / #ife4:>]

618
619
621
622
626

627
628
631
633
636
637
639
640
643
644
645
646
647
649
649
650
650
650
652
653
655
657
665
665
666
669

15 Bit Fiddling
E15F (IRE

Binary Numbers, Bits, and Bytes / g #il$. (L FIF5
Binary Integers / — i il B4k
Signed Integers / A5 %%
Binary Floating Point / — il 1% S %k
Other Number Bases / F-fti i il %
Octal / /\#E
Hexadecimal / 7l
C’s Bitwise Operators / C /[2 HAF
Bitwise Logical Operators / %285 B ¥
Usage: Masks / fk: #/5
Usage: Turning Bits On (Setting Bits) / Fi¥k: FTFFAL (RENL)
Usage: Turning Bits Off (Clearing Bits) / F#:: XHAL (EFZL)
Usage: Toggling Bits / Fi¥:: YH#fi
Usage: Checking the Value of a Bit / fi¥:: REMHE
Bitwise Shift Operators / B4z B AF
Programming Example / 4i#2 7 B
Another Example / #—/~6F
Bit Fields / fii 5Bt
Bit-Field Example / 1 FBtR B
Bit Fields and Bitwise Operators / 3 FEX F& 38 BT
Alignment Features (C11) / X 574#¥E (C11)
Key Concepts / FEME&
Summary / A<EE/NGE
Review Questions / & >J &
Programming Exercises / #ifE%k>]

16 The C Preprocessor and the C Library
$£16E CHLESRMCE

First Steps in Translating a Program / Bli¥2FHISE—4
Manifest Constants: #define / Bi/R ¥ & . #define

Contents

673

674
674
675
676

676
677
677
678
678
680
681
682
683
683
684
685
688
690
692
696
703
705
706
706
708

711

712
713

Contents

Tokens / i2 5
Redefining Constants / B & LH &
Using Arguments with #define / ZE#define Hi{di IS %
Creating Strings from Macro Arguments: The # Operator
| AESBAURFRS . #EHMF
Preprocessor Glue: The ## Operator / TRALIEERAE A : #HE B AT
Variadic Macros: ...and VA ARGS__/ Z&&% . . fl__VA ARGS__
Macro or Function? / 7 # pR& 1L £
File Inclusion: #include / 4% . #include
Header Files: An Example / 3k X476
Uses for Header Files / i Ffi 3k 3c/4
Other Directives / HAth§4
The #undef Directive / #undef ¥4
Being Defined—The C Preprocessor Perspective / M C FiAL B EHR B E X
Conditional Compilation / {4 4%
Predefined Macros / & X 7
#line and #error / #line Fl#error
#pragma / #pragma
Generic Selection (C11)/ ZRI¥E#: (C11)
Inline Functions (C99) / PHXEEL (C99)
_Noreturn Functions (C11) / _Noreturn % (C11)
The C Library / C &£
Gaining Access to the C Library / i/j[a] C J&
Using the Library Descriptions / {# Fi FEf#iiA
The Math Library / $2#JE
A Little Trigonometry / = ff [a] /&
Type Variants / &I AF{&
The tgmath.h Library (C99)/ tgmath.h JEE (C99)
The General Utilities Library / 8 Fi T B %
The exit () and atexit () Functions/exit ()l atexit () BR¥L
The gsort () Function / gsort () ¥
The Assert Library / B & FE
Using assert / assert Bk

717
717
718

721
722
723
725
726
727
729
730
731
731
731
737
738
739
740
741
744
744
745
746
747
748
750
752
753
753
755
760
760

Contents

_Static assert (Cl 1) | _Static_assert C11) 762

memcpy () and memmove () from the string.h Library

/ string.h FE 1) memcpy () Fl memmove () 763
Variable Arguments: stdarg.h / A[AEZ${(. stdarg.h 765
Key Concepts / FHBE& 768
Summary / ASE/NGE 768
Review Questions / &] 768
Programming Exercises / ZifEZk>] 770
17 Advanced Data Representation 773
F1TE BSRUERT
Exploring Data Representation / 57 £ #E %~ 774
Beyond the Array to the Linked List / M%4H 3% 3% 777
Using a Linked List / {fi %53 781
Afterthoughts / % & 786
Abstract Data Types (ADTs) / #HZ$HEAA (ADT) 786
Getting Abstract / B IR 788
Building an Interface / 7M1 789
Using the Interface / {d FA#2 K 793
Implementing the Interface / SZB$E 0 ; 796
Getting Queued with an ADT / BA%I] ADT 804
Defining the Queug Abstract Data Type / TE SCA B il S s 2 A 804
Defining an Interface / & X — ™% 0 805
Implementing the Interface Data Representation / SEPLHE O HE F£ = 806
Testing the Queue / i PAF) 815
Simulating with a Queue / FiBAF #4744 818
The Linked List Versus the Array / 43 fl1%4 824
Binary Search Trees / XA HH . 828
A Binary Tree ADT / X #f ADT 829
The Binary Search Tree Interface / — X g $i#t 0 830
The Binary Tree Implementation / — X #9328 833
Trying the Tree / i I — X% . 849

Tree Thoughts / %} 1B AR 854

Contents

Other Directions / HAth 381

Key Concepts / X #E&
Summary / A E /NG5

Review Questions / & >
Programming Exercises / #if24k>]

A Answers to the Review Questions
MiEA EIBMER

Answers to Review Questions for Chapter 1/ 55 1 EE JBIER
Answers to Review Questions for Chapter 2/ % 2 BH JBE R
Answers to Review Questions for Chapter 3/ % 3 FEE JHE R
Answers to Review Questions for Chapter 4/ 2§ 4 EE JBER
Answers to Review Questions for Chapter 5/ 58 5 ZEE J @& R
Answers to Review Questions for Chapter 6 / 58§ 6 3 & > BI& R
Answers to Review Questions for Chapter 7/ % 7 & JBER
Answers to Review Questions for Chapter 8 / 5 8 TR 3 AR
Answers to Review Questions for Chapter 9 / 5f 9 &R JHIA R
Answers to Review Questions for Chapter 10/ %% 10 & 3 &£
Answers to Review Questions for Chapter 11/ 28 11 EE S BE R
Answers to Review Questions for Chapter 12/ 2 12 EE JBEE
Answers to Review Questions for Chapter 13/ % 13 ERE JHEE
Answers to Review Questions for Chapter 14/ % 14 EE &R
Answers to Review Questions for Chapter 15/ %5 15 EE JHER
Answers to Review Questions for Chapter 16/ 55 16 B8 3 &R
Answers to Review Questions for Chapter 17 / 2§ 17 =& AR

B Reference Section

MRB SEHK

Section I : Additional Reading / Z& ¥kt [« A7l ik
Online Resources / 7E£E ¥R
C Language Books / C &5 H4E
Programming Books / 4ife 4%
Reference Books /| &% H

856
856
857
857
858

861

861
862
863
866
869
872
876
879
881
883
886
890
891
894
898
899
901

905

905
905
907
907
908

C++ Books / C++F55&
Section Il : C Operators / 2% kL1 : C BEAF
Arithmetic Operators / B AR EHEAF
Relational Operators / &z B
Assignment Operators / TR{EE BT
Logical Operators / i#Z#ia 84F
The Conditional Operator / {4 ZE 4
Pointer-Related Operators / 5385+ 4 XM E BT
Sign Operators / fF 5 2B
Structure and Union Operators / Z514 FIBE& 15 B A4
Bitwise Operators / {15 & 4F
Miscellaneous Operators / {B& & B4
Section IIl: Basic Types and Storage Classes
| ZEGHR . FEABRBIFFEEIET
Summary: The Basic Data Types / M45: FEAFIEAKR
Summary: How to Declare a Simple Variable / &45: W{JEH— M AjATE
Summary: Qualifiers / &4 : FREA/F
Section IV: Expressions, Statements, and Program Flow
| ZEHERN: RiEX. BHAIMERFR
Summary: Expressions and Statements / .45 : FxRFEH
Summary: The while Statement / &45: while i&4]
Summary: The for Statement / F&%: for iE4]
Summary: The do while Statement/ F4%5: do while iE/H]
Summary: Using if Statements for Making Choices / &&5: 1if i5H]
Summary: Multiple Choice with switch / L EE#EH switch 54
Summary: Program Jumps / 45 . &7 BkEE
Section V: The Standard ANSI C Library with C99 and C11 Additions
| BHEGERV . i C99 I C11 i ANSIC &
Diagnostics: assert.h/ §i5F: assert.h
Complex Numbers: complex.h (C99)/ HE#{: complex.h ((C99)
Character Handling: ctype.h / FZffALH; ctype.h
* Error Reporting: errno.h / §&iR4f 4. errno.h _
Floating-Point Environment: fenv.h (C99)/ ¥ &3 : fenv.h (C99)

Contents

908
908
909
910
910
911
911
912
912
912
913
914

915
915
917
919

920
920
921
921
922
923
924
925

926
926
927
929
930
930

10 Contents

Floating-point Characteristics: float.h/ & $M: float.h 933
Format Conversion of Integer Types: inttypes.h (C99)/ BHEARIHIREAFEH: inttypes.h 935
Alternative Spellings: is0646.h/ AJ#EPFE: iso646.h 936
Localization; locale.h / ZA#ifk: locale.h 936
Math Library: math.h / ${2%F# . math.h 939
Non-Local Jumps: setjmp.h/ JEAHBESS . setjmp.h 945
Signal Handling: signal.h/ {§54b#; signal.n 945
Alignment: stdalign.h (C11)/ ¥}3F: stdalign.h (Cl11) 946
Variable Arguments: stdarg.h / A[AEZ¥. stdarg.h 947
Atomics Support: stdatomic.h (C11)/ JEFZHF: stdatomic.h (CI1) 948
Boolean Support: stdbool.h (C99)/ #i/R3Z#F: stdbool.h (C99) 948
Common Definitions: stddef.h / B E X : stddef.h 948
Integer Types: stdint.h/ ¥R, stdint.h 949
Standard 1/O Library: stdio.h/ #5#f I/O fE: stdio.h 953
General Utilities: stdlib.h / JEH] T H: stdlib.h 956
_Noreturn: stdnoreturn.h/ Noreturn: stdnoreturn.h 962
String Handling: string.h/ AbBEZE4FH : string.h 962
Type-Generic Math: tgmath.h (C99) / i KA. tgmath.h (C99) 965
Threads: threads.h (C11)/ £k#2: threads.h (CI1) 967
Date and Time: time.h/ HHFIAT[E]: time.h 967
Unicode Utilities: uchar.h (C11)/ &£—#3T. A : uchar.h (CI11) 971
Extended Multibyte and Wide-Character Utilities: wchar.h (C99)
| VRS FHARAMEFF LA wehar.h (C99) 972
Wide Character Classification and Mapping Utilities: wctype . h (C99)
| FEFFFSFHEMBH TH: wetype.h (€99) 978
Section VI: Extended Integer Types / S ¥R V. ¥ BB H2 Al 980
Exact-Width Types / & 5 & 26 R 981
Minimum-Width Types / /5% B % 982
Fastest Minimum-Width Types / St/ 5% E 2R 983
Maximum-Width Types / B K5 EISH 983
Integers That Can Hold Pointer Values / R fif 748 £ i £ 8 %Y 984
Extended Integer Constants / ¥ &K # 5 & & 984

Section VII: Expanded Character Support /| 2% ¥RV . ¥ BFE/ L 984

Trigraph Sequences / =74 /57

Digraphs / XU F4F

Alternative Spellings: is0646.h/ A #EHFE . iso646.h

Multibyte Characters / 55 F5F

Universal Character Names (UCNSs) / # f %54 (UCN)

Wide Characters / & F4F

Wide Characters and Multibyte Characters / & F4F L FHF4F
Section VII: C99/C11 Numeric Computational Enhancements
| ZEYORVI: C99/C11 $fE 3138

The IEC Floating-Point Standard / IEC ¥ SR #E

The fenv.h Header File / fenv.h 3 3C{F

The STDC FP_CONTRACT Pragma / STDC FP_CONTRACT %%/~

Additions to the math.h Library / math.h FERE %}

Support for Complex Numbers / X & $§ i 37 ¥

Contents

984
985
986
986
987
988
989

990
990
© 994
995
995
996

Section IX: Differences Between C and C++/ S ¥R IX: C # C+HHIXH] 998

Function Prototypes / PR &R %Y
char Constants / char # &

The const Modifier / const fRERF
Structures and Unions / Z5 B &
Enumerations / %
Pointer-to-void / #§[i] void T84T
Boolean Types / #ii /RZEHL
Alternative Spellings / A% HFE
Wide-Character Support / 56747 X ¥
Complex Types / HH(J5#

Inline Functions / P EXBR%{

C99/11 Features Not Found in C++11 / C++11 F¥&A H C99/C11 ik

999
1000
1000
1001
1002
1002
1003
1003
1003
1003
1003
1004

11

-2

Storage Classes, Linkage,
and Memory Management

You will learn about the following in this chapter:
= Keywords:

auto, extern, static, register, const, volatile, restricted, _Thread local,
Atomic

= Functions:
rand(), srand(), time(), malloc(), calloc(), free()

= How C allows you to determine the scope of a variable (how widely known it is) and the
lifetime of a variable (how long it remains in existence)

= Designing more complex programs

One of C’s strengths is that it enables you to control a program’s fine points. C’s memory
management system exemplifies that control by letting you determine which functions know
which variables and for how long a variable persists in a program. Using memory storage is one
more element of program design.

Storage Classes

C provides several different models, or storage classes, for storing data in memory. To under-
stand the options, it’s helpful to go over a few concepts and terms first.

Every programming example in this book stores data in memory. There is a hardware aspect
to this—each stored value occupies physical memory. C literature uses the term object for such
a chunk of memory. An object can hold one or more values. An object might not yet actually
have a stored value, but it will be of the right size to hold an appropriate value. (The phrase
object-oriented programming uses the word object in a more developed sense to indicate class

512

Chapter 12 Storage Classes, Linkage, and Memory Management

objects, whose definitions encompass both data and permissible operations on the data; C is
not an object-oriented programming language.)

There also is a software aspect—the program needs a way to access the object. This can be
accomplished, for instance, by declaring a variable:

int entity = 3;

This declaration creates an identifier called entity. An identifier is a name, in this case one
that can be used to designate the contents of a particular object. Identifiers satisfy the naming
conventions for variables discussed in Chapter 2, “Introducing C.” In this case, the identifier
entity is how the software (the C program) designates the object that’s stored in hardware
memory. This declaration also provides a value to be stored in the object.

A variable name isn’t the only way to designate an object. For instance, consider the following
declarations:

int * pt = gentity;

int ranks[10];

In the first case, pt is an identifier. It designates an object that holds an address. Next, the
expression *pt is not an identifier because it's not a name. However, it does designate an
object, in this case the same object that entity designates. In general, as you may recall from
Chapter 3, “Data and C,” an expression that designates an object is called an lvalue. So entity
is an identifier that is an lvalue, and *pt is an expression that is an lvalue. Along the same
lines, the expression ranks + 2 * entity is neither an identifier (not a name) nor an lvalue
(doesn’t designate the contents of a memory location). But the expression *(ranks + 2 *
entity) is an lvalue because it does designate the value of a particular memory location, the
seventh element of the ranks array. The declaration of ranks, by the way, creates an object
capable of holding ten ints, and each member of the array also is an object.

If, as with all these examples, you can use the lvalue to change the value in an object, it's a
modifiable lvalue. Now consider this declaration:

const char * pc = "Behold a string literall";

This causes the program to store the string literal contents in memory, and that array of char-
acter values is an object. Each character in the array also is an object, as it can be accessed
individually. The declaration also creates an object having the identifier pc and holding the
address of that string. The identifier pc is a modifiable lvalue because it can be reset to point to
a different string. The const prevents you from altering the contents of a pointed-to string but
not from changing which string is pointed to. So *pe, which designates the data object holding
the 'B' character, is an lvalue, but not a modifiable Ivalue. Similarly, the string literal itself,
because it designates the object holding the character string, is an lvalue, but not a modifiable
one.

You can describe an object in terms of its storage duration, which is how long it stays in
memory. You can describe an identifier used to access the object by its scope and its linkage,
which together indicate which parts of a program can use it. The different storage classes offer

Storage Classes

different combinations of scope, linkage, and storage duration. You can have identifiers that
can be shared over several files of source code, identifiers that can be used by any function in
one particular file, identifiers that can be used only within a particular function, and even iden-
tifiers that can be used only within a subsection of a function. You can have objects that exist
for the duration of a program and objects that exist only while the function containing them is
executing. With concurrent programming, you can have objects that exist for the duration of

a particular thread. You also can store data in memory that is allocated and freed explicitly by
means of function calls.

Next, let’s investigate the meaning of the terms scope, linkage, and storage duration. After that,
we'll return to specific storage classes.

Scope

Scope describes the region or regions of a program that can access an identifier. A C variable
has one of the following scopes: block scope, function scope, function prototype scope, or file
scope. The program examples to date have used block scope almost exclusively for variables. A
block, as you'll recall, is a region of code contained within an opening brace and the matching
closing brace. For instance, the entire body of a function is a block. Any compound statement
within a function also is a block. A variable defined inside a block has block scope, and it is
visible from the point it is defined until the end of the block containing the definition. Also,
formal function parameters, even though they occur before the opening brace of a function,
have block scope and belong to the block containing the function body. So the local variables
we've used to date, including formal function parameters, have block scope. Therefore, the vari-
ables cleo and patrick in the following code both have block scope extending to the closing
brace:

double blocky(double cleo)
{
double patrick = 0.0;

return patrick;

Variables declared in an inner block have scope restricted just to that block:

double blocky(double cleo)
{
double patrick = 0.0;
int i;
for (i = 0; i < 10; i++)
{
double g = cleo * i; // start of scope for gq
patrick *= q;
} // end of scope for g

513

514

Chapter 12 Storage Classes, Linkage, and Memory Management

return patrick;

}

In this example, the scope of g is limited to the inner block, and only code within that block
can access q.

Traditionally, variables with block scope had to be declared at the beginning of a block. C99
relaxed that rule, allowing you to declare variables anywhere in a block. One new possibility is
in the control section of a for loop. That is, you now can do this:
for (int i = 0; 1 < 10; i++)

printf("A C99 feature: i = %d", i);

As part of this new feature, C99 expanded the concept of a block to include the code controlled
by a for loop, while loop, do while loop, or if statement, even if no brackets are used. So in
the previous for loop, the variable i is considered to be part of the for loop block. Therefore,
its scope is limited to the for loop. After execution leaves the for loop, the program will no
longer see that i.

Function scope applies just to labels used with goto statements. This means that even if a label
first appears inside an inner block in a function, its scope extends to the whole function. It
would be confusing if you could use the same label inside two separate blocks, and function
scope for labels prevents this from happening.

Function prototype scope applies to variable names used in function prototypes, as in the
following:

int mighty(int mouse, double large);

Function prototype scope runs from the point the variable is defined to the end of the proto-
type declaration. What this means is that all the compiler cares about when handling a func-
tion prototype argument is the types; the names you use, if any, normally don’t matter, and
they needn’t match the names you use in the function definition. One case in which the
names matter a little is with variable-length array parameters:

void use_a VLA(int n, int m, ar[n][m]);

If you use names in the brackets, they have to be names declared earlier in the prototype.

A variable with its definition placed outside of any function has file scope. A variable with file
scope is visible from the point it is defined to the end of the file containing the definition. Take
a look at this example:

#include <stdio.h>

int units = 0; /* a variable with file scope */
void critic(void);

int main(void)

{

}

