- ®

dview PEARSON - ERERPR -

www.broadview.com.cn

C++2 i

A Tour of C++

(=t)

[2] Bjarne Stroustrup &

T ERERREIE STk ket £

wwe=s http://www.phei.com.cn

RRBmBER

(SHxat)

C++2 i

A Tour of C++

[%2] Bjarne Stroustrup

% F I ¥ & kAL
Publishing House of Electronics Industry
JE5-BEIING

SN

KB IEE R Crr SIS HE BT , A SRR MR IA LR BIRE T Crt
BRES, B LT/ T Crr B M2 O SHRER | BRObRIME BEALIE . DURIRORER Crr 18
T R AT, A R R, kR AR AR RERTBLC Cor RO
St — /T TR, TR 26 T 3 R AN MR R IR, A BRAWRKE C+ IBEI
G ARG A MR Cot 1B S BN C/CH BFFRIEA R, LABRE I b 2 = iR T A
C+ IEF R RN B,

Original edition, entitled A Tour of C++, 1E, 0321958314 by Bjarne Stroustrup, published by Pearson Education,
Inc., publishing as Addison-Wesley, Copyright© 2014 Pearson Education,Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

45 #S0 BE 5 B Pearson Education KA 38 HIUIE BN R 2 A% T Tk tHAR
ih. RAHIREFUEBEUA, AELAER) R H D RABHIETH .

BB E RN (RS E A, BRI BX R E &) WHERLT.
$%%Y%Wﬁ%ﬁPwmn%mmM%iﬁﬁﬁm%Eﬁ%%%ﬁE,%%E%K%%%a

KA R B ARG S BT 01-2015-6100

BEERRE (CP) 2B

C++ 2 =A Tour of C++: 33/ (%) Wi55s /5% (StroustrupB.) 3. — Jbxt: o Tolk R AL
2016.4

Rk R)

ISBN 978-7-121-27330-8

L @C-1L @ #i-1uL @ Cifs - BFikih -3 IV @ TP312

v A B 45 1 CIP A% 7 (2015) 58 234578 5

Tl %k B

Efl il: =lh# 4 DENREARA

e iT: =W hEEDEEERAR

AR R AT: BTl R
e h A 173 (5% HbZW: 100036

A, 787x980 1/16 Efsk. 12 . 235 TF

B k. 201644 A% 1R

Bl k. 2016 4E 4 A% 1 RENRI

% fr: 55.00 G

L S - Tl R B S A G R, T T WS AR R TR e S R i SAHRATHR R,
2 R R i . (010) 88254888,

R B R i & B F Zts@phei.com.cn, ¥EARIAERIE A ML S dbgq@phei.com.cn,

IR4#htk . (010) 88258888,

=l

Al

i}

HMmER, RFERF,
—BEY

AL C++ DA B T —FB B S o 5 C++98 ML, C++11 S5 TIRATIEMT . T35 .
B RIR AR, T L G328 0T O R e v A8 S A A A H e, AR (38 17 B
MR,

5 AT —F IR E S AR, C++ MAEIEEELR, HIRMtMWELRHES,
IXLEERE AR Y BB) DA ot F . A5 00 B B 1 EA 250 AT B o T A
B Cc++ i85, Wik, ABILENE T Cr+ B0 T REFI T 2 (FrE e, %
RTINS SRR EA 1S, (BREITA NERERE, BAE HESW c++ BF4dE
—HZI, AHEEKIFE RS BGERE Y], MHEENGHES S, b —tgi
BT, SRIGHBIEFE IR A O W C+H+ Zik. WRIEHEHBIRA T C++ i85, WM
I T —AZEAE The C++ Programming Language, Fourth Edition ({8} TC++PL4) , SZB%
b, ABIER TC++PL4 55 2 % ~ 55 5 Y oA, HEH Toes s ten 2 5&, &A1
FHME I T —2 N, AP ELEM S TC+H+PLE {7483, & US40 moLR, nf
PATE TC++PL4 hilt— 0 FH4RE S . [FIFE, ZERA A FET (www.stroustrup.com) 4 — sk
H TC++PL4 9’51 2108, Waf LA TFAE,

TAMBO A CEWA T —Lemfe sl REA , BRI —A A 18T —T,
EE 4N Programming: Principles and Practice Using C++ [Stroustrup, 2009], BIME/R S 2844 5 it
B, WRBRE A = S8 S B FAE AU s 2 B T ik 5 A B ARRE LI .

FATT SR AT WG4 B F R LU AR B 1R, e Ui S W BF A M AR sl 4 2, 7 L
MNEFZN, PRATRES AR LA EEMEE, TRl —a e e, RiEus
FNHE T RRBOES IR, (FUR X P — B, VRICHEEIE T X T, XtWr s ME
FURIAR VUL — A, 8) B RS PR IR T A A A I BE 35 AR R I it A — RSk i
TR A SREZAE, Al EiEH0E, HAHRE 20k i SRS A T — 5 T, H
H BRIk AL, XA e A T % 5 O, VREUE HLA T 4R B R
RZIE T o

AFAE Cr+ IEF I FEIIRE, LHIR T mE X R MR B RN, E54E
B, WAOTEA W LRZHT, BEARIEABE RS HETFM. S THrE Rt L8R,
MA BB T HAT VR . A BB N4 18O bR Z SMRE, S8 T2 S W] L A 174 B AR

VR, WERIRATIRE T AR R, IR EERA S AR L U IREIE K

SESL, AT IFEE N HIERIEL 52 A RMER.

AR C++ fER—NEIRRIE L E TR, MAREZHNR. B, 7EXEIEA]
RSB ETHE S RIAE T C. C++98 & C++11, X HEFHEA XNERBES
14 Z AT LAFRE

Hrigt

7 5 K 2 B A UR B TC++PL4 [Stroustrup, 2012], Bk, #5588 b B 3 56 AL
TC++PL4 By A [Fl~. B i Addison—Wesley F 4 5 Peter Gordon, 2t 2 W1 ¥ 2
TC++PL4 HIFR T FE Y RA T

Bjarne Stroustrup

]

ifllg

1 The Basics

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

2 User-Defined Types

2.1
2.2
23
24
2.5
2.6

INErOAUCHON 1u.viveeecee e 1
PIOGramsccooooiiiiiiiiniiniieeesseesse oo 1
Hello, WOIIAY .v..vousessmmcsssssisinssnnsonmmesmanssorssssssssssassssssssssssssmnnensnnnn, 2
FUNCHONS ©vvviiusiersicisienmmnmmansrsmsencessossssssssesssessosssnesmmsenseessessseeseess, 3
Types, Variables, and Arithmeticcoooooooooooo 5
SCOPE vt 8
L i 8
Pointers, Arrays, and References ... 9
TS, wuvvesssunsssinissisnernaessmsnosmmsrensarssssmssssassensssisssvemmesmmensemmsemsesssssemss 12
AQVICE <ot 14
INtroductioncccevemueeroveeeeeooeeoeoo IS5
SSUEBHITES: ccons commsmasasssssssssssssome smvemmororns oassssssstsssss simmsiimesesesmmnnstas 16
CIABSEE! uscuvsussissinisions resmanseeresessasssrassssssssssssmmmsinsesesmmeemmeeemseseemesssas, 17
URIONS .ot 19
ENUMELAONSvconssscussssusssascommmmmemmseoressamsesssssssomssensesssommmnnr. 20

vii

15

iv H*%

3 Modularity

3.1
3.2
33
34
3.5

4 Classes

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5 Templates

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
59

TOLEOAUCHION «.eveeeveeeseieveeaeresiesesrere e saesae s ese e e ss bbb s 23
Separate ComPilationoccovieiimmmmm 24
NAMESPACES ©.ovvevvescrnransrrasssssesstssiss s st 26
Error Handlingco.eoeveeeciminimninsesssssss i 27
AGVICE .oovveerereersssesmesnisissesassasssssisasisns sassvnentonsonenassuonsesnsssisbasisssosss 31
INETOQUCHION «evevvveeeerenrerecrtensssessseseassnssssassnsnnessssssssesaasassssassases 33
CONCIELE TYPES -eovrvververirennimsesrsesas ettt sttt 34
ADSLACE TYPES .ovvvvveiieiieininirinsesesesess s s 39
Virtual FUNCHONScvouriereseeeieeiesienemies s s 42
Class Hi€rarchiescccoceevereeriimmiimenmnsemnmmsensss s 42
COPY ANA MOVE oovvaiiriseeseissessenicinsin s s nsssns 48
AUVICE oavveveeeeeeeeeeesueeeeeseesseesseseesaiesssasssbssas s rbe st s 56
| FoXs gl 10161510 ¢ NEURTRUO OO OO O PR STPPP PP PRI 59
Parameterized TYPES ...cccovuiirvieremmmmmmsmissnininrssssnssssiss s 59
Function TEMPIALEScovuerrermmmiseiimniiisiimmnns s 62
Concepts and Generic Programming ... 62
FUNCHON ODJECES .vovuveveiveieriaeisisiessssisisssisismnissssissss s 64
Variadic TEMPIAEScccvvuirermismiersinmiesessisiissssssssssnsssees 66
ALIASES ocvververeeervrssniseesasseesesnsessssssasssassssrnensessssar s as s s st r s s 67
Template Compilation Model ..o 68
AAVICE oiveeeeereereetesuseseeeeseesesses s ese s s en s s et s 68

6 Library Overview

6.1
6.2
6.3
6.4

INEFOAUCHION <.oevveeeiereereeieereeeeeeiessess e s sb e 71
Standard-Library COmponentsc..cccoeeemnmnminsnssenes 72
Standard-Library Headers and Namespacecccoovneeniins 72
AGVICE vttt et et rs et e s 74

7 Strings and Regular Expressions

7.1
7.2
7.3
7.4

TOTOAUCIION 1veeeveveeeviereeeereeerressreeseenaesss s ebesenee s sbesma s sns s s 75
SHENES .voovnerreeeeersersmansrnsesssissstsseseassssstsrss s st st s
Regular EXPIeSSiONScocoovmmumsusiiiminmimmnmssssssssississsnsesscn e 78
AVICE cevovviereeiveesuesseestessesseessesaasseessessteisssaassssassassassnsnssssnssunsssanses 84

23

33

59

71

75

8 I/0 Streams

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9 Containers

9.1
9.2
9.3
9.4
9.5
9.6
9.7

10 Algorithms

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11 Utilities

11.1
11.2
11.3
11.4
11.5
11.6
11.7

INErOAUCHION ..ottt 85
0030 86
L S 87
IO SHALE ..o 89
/O of User-Defined TYPESovveveeeeeeeeeeeeemreseeoeoooooooo 90
FOrmattingccocovvveuniieiiireisieeceeseseee oo 91
File Streamsoocoovivoveiuieeeeeeeeee oo 92
SrNG SIEAMS ..o oo 92
AVICE ..ot 93
TOROAUCHION. suosensiosscsisssrsmessssmmmenmmasenemesseenmsmssmssensessisissvechommamsmsd 95
VBCROT ..iiiiiniiiiniens ittt et sss bt e ssses e s s s sen e sessese e esen e 96
BISE et e et e e et 100
MNAP c.ieioimusiasassirnsnesesssassissssssiisainmmnnranonsersensesssessnasesssassssessessisonesss 101
UNOFdEred_MaPcceeirieriiieeiine et a e 102
Container OVEIVIEWc.ooueveeeerreereeeeeeeseooooooeoeoooooo 103
AQVICE ..o 104
INtrOdUCHIONocvieeieiieieeeeeeeee oo 107
US€ Of IEIALOTS ...t 108
TteTAtOr TYPEScoucvueuerrerrieirirceeceeeeeeeesssesssses e 111
Stream IeTatorsoueeeeeeereereereeee oo 112
PrediCatesuiueiueiieiiiiiiceceeceeeee oo 113
AlZOrithm OVETVIEWovuevreivnneeecsersenseeeeiessense oo 114
Container AIOrithmscooeveeuevevreeereeoreoooooooo, 115
AGVICE viisiinsisemmmessersamsmmarermessonsssessasssssamssasssnssssssnmensenmnmenenn s s snes. 115
INErOAUCHION ..vueeeeiiieeeeee e 117
Resource Managemento..ovvuorenrevosesenssoesseoooooo, 117
Specialized CONtAINETSovuruvreeeeeeeereeereeeeeeoeeeoooon, 121
5L 125
Function Adaptorscecueeveeveeeoemresooeooooooooo 125
Type FUNCHioNSc.oovvvuuenmeereiseeeeeeee oo 128

H%

85

95

107

117

vi

Hk

12 Numerics

12.1
12.2
12.3
12.4
125
12.6
12.7
12.8

TNITOAUCTION .eveonennnessonsssriisisisiasasis s sasmemsissssvassisasssmaaessssssavenamoanons 133
Mathematical FUNCHONScoveveerimeeiiiieiiiiisiiesnneessne e snnesennnes 134
Numerical AIZOrithmscccccciviiiiniiniiii s 135
Complex NUMDETScccoviverimmriiimnmmimsiisesissesisnineseens 135
RANAOHN NUIBBLS: .us eaomsrnsmmsssonpssiinsissnssussiinisseasivasssigsissgsps seosvaove 136
VeCtOr ATIERIMELIC vo.vveeeieeiceeeeee et e e e s e e sinssanssabasaaens 138
NUMETIC LAMUILS wvevvvvreeareesiarserasnersssmeerseerenimmeinmersenssssessssessssesane 138
ATASICE e wmmoi s R R T S A TGS BTSSRSO s S st 138

13 Concurrency

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

TOOAUCHON . csosrivisnsmvvssomvsimmmsseorsss sanss s sesssmvmesvesramns s vmtsopsnss 141
Tasks aNd threadseceereiesssiossessossssiissinssansressrsissssssssssssnsns 142
Passing ATGUINENLScoiveinsrinsrssmsesessnsesieseississsasssssssssissiaes 143
Returning ReSUltscceviiiiiie it 144
Sharing DALaccoesisisssersesssssssaenssassersusmsssesssessssssissassonsnssssssans 144
Waiting for EVENtSccocciiemieniiinicsini e 146
Communicating Taskscccoviimiiiniinnneeee e 147
AQVICE .eeieeeeeeiivireeecveineeee e ebeesae bt e st sas s s s et 151

14 History and Compatibility

Index

14.1
14.2
14.3
14.4
14.5

HISTOLY: cossiusassonssssivesssseansssysssnstoncmnserivanansosrssesensassnerses s HNTHT 95475 153
CHH11 EXEENSIONS < iivsssusrmsiesicssssssosiassarsssis sanvosvesssnsvorvesvunssunosusssnes 158
C/CH+ Compatibilitycoeeerviimiieiiiminiieinsessscssisisssaeas 161
Bibliographycccococeiiiiminiiiis s 166
AVICE e eeeeeee ettt e eae et e 168

133

141

153

171

The Basics

The first thing we do, let’s
kill all the language lawyers.
— Henry VI, Part Il

* Introduction

* Programs

* Hello, World!

* Functions

* Types, Variables, and Arithmetic
* Scope and Lifetime

+ Constants

« Pointers, Arrays, and References
* Tests

* Advice

1.1 Introduction

This chapter informally presents the notation of C++, C++’s model of memory and computation,
and the basic mechanisms for organizing code into a program. These are the language facilities
supporting the styles most often seen in C and sometimes called procedural programming.

1.2 Programs

C++ is a compiled language. For a program to run, its source text has to be processed by a com-
piler, producing object files, which are combined by a linker yielding an executable program. A
C++ program typically consists of many source code files (usually simply called source files).

2 The Basics Chapter 1

object file 1
object file 2

An executable program is created for a specific hardware/system combination; it is not portable,
say, from a Mac to a Windows PC. When we talk about portability of C++ programs, we usually
mean portability of source code; that is, the source code can be successfully compiled and run on a
variety of systems.
The ISO C++ standard defines two kinds of entities:
* Core language features, such as built-in types (e.g., char and int) and loops (e.g., for-state-
ments and while-statements)
» Standard-library components, such as containers (e.g., vector and map) and I/O operations
(e.g., << and getline())
The standard-library components are perfectly ordinary C++ code provided by every C++ imple-
mentation. That is, the C++ standard library can be implemented in C++ itself (and is with very
minor uses of machine code for things such as thread context switching). This implies that C++ is
sufficiently expressive and efficient for the most demanding systems programming tasks.
C++ is a statically typed language. That is, the type of every entity (e.g., object, value, name,
and expression) must be known to the compiler at its point of use. The type of an object determines
the set of operations applicable to it.

executable file

1.3 Hello, World!

The minimal C++ program is
int main() { } Il the minimal C++ program

This defines a function called main, which takes no arguments and does nothing.

Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function
body. The double slash, //, begins a comment that extends to the end of the line. A comment is for
the human reader; the compiler ignores comments.

Every C++ program must have exactly one global function named main(). The program starts
by executing that function. The int integer value returned by main(), if any, is the program’s return
value to “the system.” If no value is returned, the system will receive a value indicating successful
completion. A nonzero value from main() indicates failure. Not every operating system and execu-
tion environment make use of that return value: Linux/Unix-based environments often do, but Win-
dows-based environments rarely do.

Typically, a program produces some output. Here is a program that writes Hello, World!:

#include <iostream>

int main()

{

std::cout << "Hello, World!\n";

}

Section 1.3 Hello, World! 3

The line #include <iostream> instructs the compiler to include the declarations of the standard
stream 1/O facilities as found in iostream. Without these declarations, the expression

std::cout << "Hello, World!\n"

would make no sense. The operator << (“put to) writes its second argument onto its first. In this
case, the string literal "Hello, World!\n" is written onto the standard output stream std::cout. A string
literal is a sequence of characters surrounded by double quotes. In a string literal, the backslash
character \ followed by another character denotes a single “special character.” In this case, \n is the
newline character, so that the characters written are Hello, World! followed by a newline.

The std:: specifies that the name cout is to be found in the standard-library namespace (§3.3). 1
usually leave out the std:: when discussing standard features; §3.3 shows how to make names from
a namespace visible without explicit qualification.

Essentially all executable code is placed in functions and called directly or indirectly from
main(). For example:

#include <iostream> Il include (“import”) the declarations for the I/O stream library
using namespace std; Il make names from std visible without std:: (§3.3)
double square(double x) Il square a double precision floating-point number
{
return x#x;
}
void print_square(double x)
{
cout << "the square of " << x << " is " << square(x) << "\n";
}
int main()
{
print_square(1.234); Il print: the square of 1.234 is 1.52276
}

A “return type” void indicates that a function does not return a value.

1.4 Functions

The main way of getting something done in a C++ program is to call a function to do it. Defining a
function is the way you specify how an operation is to be done. A function cannot be called unless
it has been previously declared.

A function declaration gives the name of the function, the type of the value returned (if any),
and the number and types of the arguments that must be supplied in a call. For example:

Elem= next_elem(); Il no argument; return a pointer to Elem (an Elem*)
void exit(int); Il int argument; return nothing
double sqrt(double); 1l double argument; return a double

4 The Basics Chapter 1

In a function declaration, the return type comes before the name of the function and the argument
types after the name enclosed in parentheses.

The semantics of argument passing are identical to the semantics of copy initialization. That is,
argument types are checked and implicit argument type conversion takes place when necessary
(§1.5). For example:

double s2 = sqrt(2); Il call sqrt() with the argument double{2}
double s3 = sqrt("three"); Il error: sqrt() requires an argument of type double

The value of such compile-time checking and type conversion should not be underestimated.

A function declaration may contain argument names. This can be a help to the reader of a pro-
gram, but unless the declaration is also a function definition, the compiler simply ignores such
names. For example:

double sqrt(double d); // return the square root of d
double square(double); // return the square of the argument

The type of a function consists of the return type and the argument types. For class member func-
tions (§2.3, §4.2.1), the name of the class is also part of the function type. For example:

double get(const vector<double>& vec, int index); Il type: double(const vector<double>&,int)
char& String::operator[](int index); Il type: char& String::(int)

We want our code to be comprehensible, because that is the first step on the way to maintainability.
The first step to comprehensibility is to break computational tasks into comprehensible chunks
(represented as functions and classes) and name those. Such functions then provide the basic
vocabulary of computation, just as the types (built-in and user-defined) provide the basic vocabu-
lary of data. The C++ standard algorithms (e.g., find, sort, and iota) provide a good start (Chapter
10). Next, we can compose functions representing common or specialized tasks into larger compu-
tations.

The number of errors in code correlates strongly with the amount of code and the complexity of
the code. Both problems can be addressed by using more and shorter functions. Using a function
to do a specific task often saves us from writing a specific piece of code in the middle of other code;
making it a function forces us to name the activity and document its dependencies.

If two functions are defined with the same name, but with different argument types, the com-
piler will choose the most appropriate function to invoke for each call. For example:

void print(int); Il takes an integer argument
void print(double); // takes a floating-point argument
void print(string); // takes a string argument

void user()

{
print(42); 1l calls print(int)
print(9.65); Il calls print(double)

print("D is for Digital™); // calls print(string)
}

If two alternative functions could be called, but neither is better than the other, the call is deemed
ambiguous and the compiler gives an error. For example:

Section 1.4 Functions 5

void print(int,double);
void print(double,int);

void user2()
{

print(0,0); Il error: ambiguous
}

This is known as function overloading and is one of the essential parts of generic programming
(§5.4). When a function is overloaded, each function of the same name should implement the same
semantics. The print() functions are an example of this; each print() prints its argument.

1.5 Types, Variables, and Arithmetic

Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.

A declaration is a statement that introduces a name into the program. It specifies a type for the
named entity:

* A type defines a set of possible values and a set of operations (for an object).

* An object is some memory that holds a value of some type.

* A value is a set of bits interpreted according to a type.

* A variable is a named object.
C++ offers a variety of fundamental types. For example:

bool Il Boolean, possible values are true and false

char Il character, for example, ‘a’, z', and '9'

int Il integer, for example, -273, 42, and 1066

double Il double-precision floating-point number, for example, -273.15, 3.14, and 299793.0
unsigned Il non-negative integer, for example, 0, 1, and 999

Each fundamental type corresponds directly to hardware facilities and has a fixed size that deter-
mines the range of values that can be stored in it:

bool: ‘:l
char: \[:‘ | I I
gowle:| | [[[| [| |

A char variable is of the natural size to hold a character on a given machine (typically an 8-bit
byte), and the sizes of other types are quoted in multiples of the size of a char. The size of a type is
implementation-defined (i.e., it can vary among different machines) and can be obtained by the

6 The Basics Chapter 1

sizeof operator; for example, sizeof(char) equals 1 and sizeof(int) is often 4.
The arithmetic operators can be used for appropriate combinations of these types:

x+y Il plus

+x Il unary plus

x-y Il minus

=X Il unary minus

Xy Il multiply

xly Il divide

x%y Il remainder (modulus) for integers

So can the comparison operators:

x== Il equal

x!=y Il not equal

X<y Il less than

x>y Il greater than

x<=y Il less than or equal
x>=y Il greater than or equal

Furthermore, logical operators are provided:

x&y Il bitwise and

x|y Il bitwise or

Xy Il bitwise exclusive or
X Il bitwise complement
x&&y Il logical and

x|ly Il logical or

A bitwise logical operator yields a result of the operand type for which the operation has been per-
formed on each bit. The logical operators && and || simply return true or false depending on the
values of their operands.

In assignments and in arithmetic operations, C++ performs all meaningful conversions between
the basic types so that they can be mixed freely:

void some_function() 1l function that doesn't return a value

{

double d = 2.2; Il initialize floating-point number

inti=7; 1l initialize integer

d = d+i; Il assign sum to d

i = dx*i; I assign product to i (truncating the double d*i to an int)
}

The conversions used in expressions are called the usual arithmetic conversions and aim to ensure
that expressions are computed at the highest precision of its operands. For example, an addition of
a double and an int is calculated using double-precision floating-point arithmetic.

Note that = is the assignment operator and == tests equality.

C++ offers a variety of notations for expressing initialization, such as the = used above, and a
universal form based on curly-brace-delimited initializer lists:

double d1 = 2.3; Il initialize d1 to 2.3
double d2 {2.3}; Il initialize d2 to 2.3

Section 1.5 Types, Variables, and Arithmetic 7

complex<double>z = 1; Il a complex number with double-precision floating-point scalars
complex<double> z2 {d1,d2};

complex<double> z3 = {1,2}; Il the = is optional with { ... }

vector<int> v {1,2,3,4,5,6}; Il a vector of ints

The = form is traditional and dates back to C, but if in doubt, use the general {}-list form. If nothing
else, it saves you from conversions that lose information:

inti1 =7.8; Il i1 becomes 7 (surprise?)
inti2 {7.8}; Il error: floating-point to integer conversion
inti3 = {7.8}; Il error: floating-point to integer conversion (the = is redundant)

Unfortunately, conversions that lose information, narrowing conversions, such as double to int and
int to char are allowed and implicitly applied. The problems caused by implicit narrowing conver-
sions is a price paid for C compatibility (§14.3).

A constant (§1.7) cannot be left uninitialized and a variable should only be left uninitialized in
extremely rare circumstances. Don’t introduce a name until you have a suitable value for it. User-
defined types (such as string, vector, Matrix, Motor_controller, and Orc_warrior) can be defined to be
implicitly initialized (§4.2.1).

When defining a variable, you don’t actually need to state its type explicitly when it can be
deduced from the initializer:

auto b = true; Il a bool
auto ch ='x"; Il a char
auto i = 123; Il an int
autod = 1.2; Il a double

auto z = sqrt(y); Il z has the type of whatever sqrt(y) returns

With auto, we use the = because there is no potentially troublesome type conversion involved.

We use auto where we don’t have a specific reason to mention the type explicitly. ““Specific
reasons’ include:

« The definition is in a large scope where we want to make the type clearly visible to readers

of our code.

* We want to be explicit about a variable’s range or precision (e.g., double rather than float).
Using auto, we avoid redundancy and writing long type names. This is especially important in
generic programming where the exact type of an object can be hard for the programmer to know
and the type names can be quite long (§10.2).

In addition to the conventional arithmetic and logical operators, C-++ offers more specific opera-
tions for modifying a variable:

x+=y Il x = x+y

++x Il increment: x = x+1
X==y Il x=x-y

-=X Il decrement: x = x-1
XE=Y Il scaling: x = x*y

x/=y 1l scaling: x = x/y
x%=y Il x = x%y

These operators are concise, convenient, and very frequently used.

8 The Basics Chapter 1

1.6 Scope and Lifetime

A declaration introduces its name into a scope:

« Local scope: A name declared in a function (§1.4) or lambda (§5.5) is called a local name.
Its scope extends from its point of declaration to the end of the block in which its declara-
tion occurs. A block is delimited by a { } pair. Function argument names are considered
local names.

* Class scope: A name is called a member name (or a class member name) if it is defined in a
class (§2.2, §2.3, Chapter 4), outside any function (§1.4), lambda (§5.5), or enum class
(§2.5). Its scope extends from the opening { of its enclosing declaration to the end of that
declaration.

* Namespace scope: A name is called a namespace member name if it is defined in a name-
space (§3.3) outside any function, lambda (§5.5), class (§2.2, §2.3, Chapter 4), or enum
class (§2.5). Its scope extends from the point of declaration to the end of its namespace.

A name not declared inside any other construct is called a global name and is said to be in the
global namespace.

In addition, we can have objects without names, such as temporaries and objects created using

new (§4.2.2). For example:

vector<int> vec; Il vec is global (a global vector of integers)

struct Record {
string name; // name is a member (a string member)
...

b5

void fct(int arg) 1l fct is global (a global function)
Il arg is local (an integer argument)

{

string motto {"Who dares wins"}; // motto is local
auto p = new Record{"Hume"}; Il p points to an unnamed Record (created by new)
...

3

An object must be constructed (initialized) before it is used and will be destroyed at the end of its
scope. For a namespace object the point of destruction is the end of the program. For a member,
the point of destruction is determined by the point of destruction of the object of which it is a mem-
ber. An object created by new “lives” until destroyed by delete (§4.2.2).

1.7 Constants

C++ supports two notions of immutability:
* const: meaning roughly “I promise not to change this value.” This is used primarily to
specify interfaces, so that data can be passed to functions without fear of it being modified.
The compiler enforces the promise made by const.

t3l

