TRING BIRRERE TSR ZER I PEARSON

s

SedgewickZBEZ&, 5&fRRTAOCP—RAEA
NTEZIRIET, BAREHHHP
BB BERRUNAZENS0MNEE

\/
A/ Algorithms rourth dition

(FECh - SE4h)

[Z£] Robert Sedgewick ..

Kevin Wayne =

IR A E ARk i

% POSTS & TELECOM PRESS

I BEREMuEnReRa

A
\ Algorithms Fourth Edition

(HECHR - B4h0)

Robert Sedgewick
(%] Kevin Wayne ®

ANV A T
It

BEHERSE (C1P) iR

Bk o AR ¢ EXX / (B) EFER
(Sedgewick,R.) , (%) FB (Wayne,K.) #F. — dbxl :
N BGHEH H AL, 2016. 3

(BRI EHLEERSD

ISBN 978-7-115-41690-2

[. Q- II. Q% @F- M. OBEFIHEN—
Bk —3 3 V. OTP301.6

rh [R A B B AHCTPE R AZ - (2016) 550233525

mERE

APMERBETRENOSHES, SENA T RTAEMBRLSEHELEHR, FHEEH
EEHERE . R EAIEAFA A EAT TR, 5 4 RS T SO0 BUS RIA 2
() 50 NEHE, $ROET PRSI ELXLE Java ARESSEIUR A T RRALA 4e KA, & ATLA
FiEMINARE . AHRCEMIE R T AN AR RE SRR, WREdE. 45
HEFRI S TR

ABE A FERFBM I ESES.

¢ E [35] Robert Sedgewick Kevin Wayne
RiERE K #
TAEENE] BN

o NRHRE B HRETT EETEERKRFETFRIS
hk4s 100164 HLFHE(4F 315@ptpress.com.cn
4k http://www.ptpress.com.cn

CE K FEERRIT Bl
& FFA: 880X 1230 1/24
ENdk: 39.33
E¥. 966TF 20164E3 A5 2 i
EN¥c: 6001 —8 500/tF 201643 AL RT5E 1 REDK
ZERARZEICS EF: 01-2015-86265
Efr: 129.0070

EEARE AL (010)5109518655600 ENIEFREHLE: (010)81055316
BB (010)81055315
IEZEHTIE: RELIBFE 8052 5

Rl 1% 7= BA

Original edition, entitled Algorithms, Fourth Edition, 9780321573513 by Robert
Sedgewick, Kevin Wayne, published by Pearson Education, Inc., publishing as Addison
Wesley, Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording or by
any information storage retrieval system, without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD. and POSTS &
TELECOM PRESS Copyright © 2016.

This edition is manufactured in the People’s Republic of China, and is authorized for

sale only in the People’s Republic of China excluding Hong Kong, Macao and Taiwan.

A& ChiE B Pearson Education Asia Ltd B4 RMREL H ARAE IR R iR . RZEH
WE AT, AFLMEM X E fl i A BAE .

(PR F i N\RSEMEEEA GRiE. MITFEITBIX A S S HIXERIN) B985 R1T.

A3 31 154 Pearson Education (B34 #F HARERD BOLBTIIRE, Thn%
HAEHE. WAURE, BEUW%R.

& Ak Bk #Adam. Andrew. Brett. Robbie, 4% % #fLinda.
—Robert Sedgewick
#k % Jackiefe Alex.
—Kevin Wayne

o

T

[

A RS 4 A EE AT AL
FR I — SRR B REAE B 45 T K
RAE . BEERETRIB AR £
#, EREEERE TIHTEILRGHEE
THA G R RER L AB BT AT
A%, SRENIFRARKSE T,
P A3t S B TR 2 9 R BOF IR 4
B T EMR RS AR, XA
Wbz, REE N ZSURAIAT]
it

Hikfe B Mo F A RTAEHR
BURRFBeA TR R, HEHFA R
X AT ARG R AR
HHEALE A BA R Rz TEE
PR— S a R RE AT DR U R, A
B p AR AR TIESOFER M KR
WRERR, RN TAE P& B AR,
M ER R B N) B2 7 TR o
LRSI AR, FRA T4k B HE ATy
EXREMIR N R CEu A

FEERGRIEM e, XER%KT
S TSR ERN TH; W
ARG R EHRMERG | %, kOl
R R e AR] Sk i — 5y
ARG FE , BEE AL
GURI AR Tk, X SRR IR R
WA K.

FETFIR“F S X SR L 2 A,
ife B 2Hrhaf < IR BA
SSRGS A BIRER R . RIFHAK
WHFsEHERE . R BT 5w
HERNE o R — TS R LA B B
SZeBRNE.

Iz &t

AHBBOITHRA SERMERRE.
SELA I N Z LR G R
T REMXNER, EEMXEAR
OESFMIHTRFRE T I, FI R
Efile ABEFEEE XTI .

2 Al

Dilk

ik BRARERSEREI, I
THE TEFEZ MG Ersfrikit. B
AR AR AT LUz AT iR iR O AR
5, RAEHETHRAGEH. hEF
RfJavaifi MG R, (EH SRR T
{8 2 2 6 LA BRA QiR 0 5 E AT
4 R AR R SE B R 33

HAEEA RATERIERR XA
THACGREE AR, KBRS Ak E
BAE T —il2,

SRUNNE S P U R
FCHE RN 5. X L83 1 2
ZH, AFEYHEENS S TEYE. it
RIS RGETRY, URERINAERE
PR R4 RS

FAE FAHERW ERER AR
RORMARIE R PERE . FRATATEERY Tt
FkBTERE, RIGEILHIETPIETT
PR BRI .

R ARREHE T HEAR S 5
KA HFES . BREE . BRFR
HBALE, AT LTS h P8R
AT I K71 g o s W = AP 1
AU, 0K R 3 20 2060418 LAk i 22
Tk DA BB e 7= e W i o

A8 EZ B RS KR EE W
R AR R ATRE Z REHA, X
SRR T AR, 2007 A
AR L LA FGE . BRI Y)
R AE S ABUCRMIE . BAEN, 4]
EITRERE, MR, T &R
BRAFER AN T RER o

EBEEMG

AR TR R BRI EM shalgs.
cs.princeton.edu, X — 34] 1] (1) & &
i, FAEMEWAL, B8 TXTHE
FEHRESHRFE00R, HnT R 2ikis.

—MEERR AETABNENS
HIFRME T aEE, WREX 0 E.

A TR PR R USR]
DA AR F|, BHHEAGE SR TRF
Hhko Wb, ERIEF LRI,
PIanE A LB bR R O S
B, WA RURZA NS5
% P RS, RATHE SRR
JS7 FHER Bk

FMEEFE MR REE T Lok
InE R (R — YRR {3 TR
BER) . RZFEN AT . WL
> RIE SR A e — e Ay PR P A wEREL

HATA BRIEK, EMEE
W, TEX BT A EE 2 E0R
TR RN HBER .

WA MR SRR A
BRI —BELT R, UA—RIGE
felk . Exb . MABE A& IR T

Ak AR USRS R AR
He, RO A E 2 SR &
R A A BT IR

Rl AR AAA E .
— MR, EEBGEE TR — U T AR
FkdUe A ARG R RSN E B, Jf
R RV A AR 9 2 5 SR FE R A 1R
HEAE B

1ERHH

AR R R -
B CXERZ O NS, JFRELL
S FTOM R | B AR A]
WETTHEIRE S . — Ok, LR =
—I AU E R e iREm R R, H
WAE— TR RS 52 mBT
FHLRSG, #ARRERS D A1,

SR A5 Java S PR 1k A g
gt (B HARAS KUK (45 2R AL BUAR
wEE S WA LREEN. RIT7AFH

B B 3

Tlavafyhstt (LFBzH) , BHAS
X |15 4R

i B 2 BB R A e B
Wik (DBaAEMEEE) , Hik
EABIHATERESRKSEEEIR, A
A —E R RCE R R . NI
SRR A A E R SR A, IR
TEBHHERN A .

AW RN RAE T e £ BT
FHLAE . R, BHEFLE
SN T fRASERIER, H ELX T
e E MR P e
A HE.

HRNE

XA BEAEEARN 1 — A SR
QavaffriZit: —FEERIAE) |
ARAAE XS AL T BRSP4
XA A Ak v] AR I B = A2 B
THEAERE AT TR B, WA A
e BRFE . TRESRE SRR Rk
THE] SR A 2 A SRR A

A A5 KR4 25K H Sedgewick Y5
LRIBE. AL, ABMZREIN
SRR, (HiA & TS
BAFHLFRE IS . Sedgewicki) (C
Bk B3R) (C+553k (3B30)) (Java

4 I

Bk (53) EESAESEHE0R
RN, TABURET AR
— TAERSEERO T — S, d
BRI R ER S .

Bt

ABMGRE L T I404ERTTE], AR
B——FIrAES 5 ARATRER) . A4
BRI LM —3E30HE T L+ A, Hba
& (¥FHF) Andrew Appel, Trina
Avery. Marc Brown. LynDupré. Philippe
Flajolet, TomFreeman, DaveHanson. Janet
Incerpi, Mike Schidlowsky, Steve Summit
FIChris Van Wyk, FRERSHBA A A,
S H A 2\ TTRRZ 8 3 B L +-4F
Bi. ZFH4, RATZERBHKH TA

R R A4 ARSI S H A B A B B 4
FA, R A M vl kR E W
HEFRAY T F S A9 .

FA 138 T IR 2 % T
Bl Boe) R SR, X RA BRI
TH AR

Peter GordonJ L WA B EEZ W52
HTRZA R, X—RETH “H
AWHIR” fofE S ARt R AR R AR A,
KT, KT Barbara Woodik
BBV %% TAF, Julie NahilX4: =
HRREMEH, DIRKAEEE L RER T
HABHEEME S TEMRA.
B ANERAE R B B, AR F Y
R IR Z L ZE W,

BAE B s ati it Bipeapireesimonres 3
11 FERhgRER 8
1.2 HiEm% 64
1.3 . IR 120
14 B 172
1.5 ZEHIF%: union-find ik 216
-5 - 3 - S 243
2.1 WIRHFEE 244
22 EIFHEF 270
23 HREHEF 288
24 f5EBAF 308
25 A 336
K 5 361
3.1 5% 362
3.2 AR 396
3.3 FEraRm 424
34 HFIE 458
3.5 R 486

BE AT P oo e cees e e en s e s snen e aenn 515

Bo®

BE6E

4.1
4.2
43
44

3.1
32
53
54
33

p |
A
TR/ VA AR
AT

T HET
A AR AR
TR
TEMZ A
R 4

...

518
566
604
638

702
730
758
788
810

TRNG BRRBEBETEIN®EZFR I PEARSON

EENR

SedgewickZBZE, S5ERRTAOCP—XAEE
NTESIRIET, BAR=EWHHET
REMEERERUNEENS0/ER

\
‘ Algorithms Fourth Edition

(e - 54t)

Robert Sedgewick ..
[X] Kevin Wayne =

P T R A A % B e 1 i £k

POSTS & TELECOM PRESS

\

ONE

Fundamentals

1.1 Basic Programming Model., 8
1.2 DataAbstraction. 64
1.3 Bags, Queues,and Stacks 120
1.4 Analysis of Algorithms 172

1.5 Case Study:Union-Find. 216

algorithms—methods for solving problems that are suited for computer imple-
mentation. Algorithms go hand in hand with data structures—schemes for or-
ganizing data that leave them amenable to efficient processing by an algorithm. This
chapter introduces the basic tools that we need to study algorithms and data structures.

First, we introduce our basic programming model. All of our programs are imple-
mented using a small subset of the Java programming language plus a few of our own
libraries for input/output and for statistical calculations. SECTION 1.1 is a summary of
language constructs, features, and libraries that we use in this book.

Next, we emphasize data abstraction, where we define abstract data types (ADTs) in
the service of modular programming. In SECTION 1.2 we introduce the process of im-
plementing an ADT in Java, by specifying an applications programming interface (API)
and then using the Java class mechanism to develop an implementation for use in client
code.

As important and useful examples, we next consider three fundamental ADTs: the
bag, the queue, and the stack. SECTION 1.3 describes APIs and implementations of bags,
queues, and stacks using arrays, resizing arrays, and linked lists that serve as models and
starting points for algorithm implementations throughout the book.

Performance is a central consideration in the study of algorithms. SECTION 1.4 de-
scribes our approach to analyzing algorithm performance. The basis of our approach is
the scientific method: we develop hypotheses about performance, create mathematical
models, and run experiments to test them, repeating the process as necessary.

We conclude with a case study where we consider solutions to a connectivity problem
that uses algorithms and data structures that implement the classic union-find ADT.

The objective of this book is to study a broad variety of important and useful

CHAPTER1 ® Fundamentals

Algorithms When we write a computer program, we are generally implementing a
method that has been devised previously to solve some problem. This method is often
independent of the particular programming language being used—it is likely to be
equally appropriate for many computers and many programming languages. It is the
method, rather than the computer program itself, that specifies the steps that we can
take to solve the problem. The term algorithm is used in computer science to describe
a finite, deterministic, and effective problem-solving method suitable for implementa-
tion as a computer program. Algorithms are the stuff of computer science: they are
central objects of study in the field.

We can define an algorithm by describing a procedure for solving a problem in a
natural language, or by writing a computer program that implements the procedure,
as shown at right for Euclid’s algorithm for finding the greatest common divisor of
two numbers, a variant of which was devised
over 2,300 years ago. If you are not familiar

! e . English-language description
with Euclid’s algorithm, you are encour-

Compute the greatest common divisor of

aged to work EXERCISE 1.1.24 and EXERCISE two nonnegative integers p and q as follows:
1.1.25, perhaps after reading SECTION 1.1. In BRGS0 ks) SE oK, Sivide ity

. and take the remainder r. The answer is the
this book, we use computer programs to de- greatest common divisor of g and r.

scribe algorithms. One important reason for
doing so is that it makes easier the task of Java-language description

checking whether they are finite, determin- public static int gcd(int p, int @)
S . : o {

¥st1c, and effective, as required. But it is ‘fllSO S5 (. O3 DRSS
important to recognize that a program in a intr=p%aq;

particular language is just one way to express PECKINIBRSSE

an algorithm. The fact that many of the al-
gorithms in this book have been expressed
in multiple programming languages over the
past several decades reinforces the idea that each algorithm is a method suitable for
implementation on any computer in any programming language.

Most algorithms of interest involve organizing the data involved in the computa-
tion. Such organization leads to data structures, which also are central objects of study
in computer science. Algorithms and data structures go hand in hand. In this book we
take the view that data structures exist as the byproducts or end products of algorithms
and that we must therefore study them in order to understand the algorithms. Simple
algorithms can give rise to complicated data structures and, conversely, complicated
algorithms can use simple data structures. We shall study the properties of many data
structures in this book; indeed, we might well have titled the book Algorithms and Data
Structures.

Euclid’s algorithm

CHAPTER1 = Fundamentals

When we use a computer to help us solve a problem, we typically are faced with a
number of possible approaches. For small problems, it hardly matters which approach
we use, as long as we have one that correctly solves the problem. For huge problems (or
applications where we need to solve huge numbers of small problems), however, we
quickly become motivated to devise methods that use time and space efficiently.

The primary reason to learn about algorithms is that this discipline gives us the
potential to reap huge savings, even to the point of enabling us to do tasks that would
otherwise be impossible. In an application where we are processing millions of objects,
it is not unusual to be able to make a program millions of times faster by using a well-
designed algorithm. We shall see such examples on numerous occasions throughout
the book. By contrast, investing additional money or time to buy and install a new
computer holds the potential for speeding up a program by perhaps a factor of only 10
or 100. Careful algorithm design is an extremely effective part of the process of solving
a huge problem, whatever the applications area.

When developing a huge or complex computer program, a great deal of effort must
go into understanding and defining the problem to be solved, managing its complex-
ity, and decomposing it into smaller subtasks that can be implemented easily. Often,
many of the algorithms required after the decomposition are trivial to implement. In
most cases, however, there are a few algorithms whose choice is critical because most
of the system resources will be spent running those algorithms. These are the types of
algorithms on which we concentrate in this book. We study fundamental algorithms
that are useful for solving challenging problems in a broad variety of applications areas.

The sharing of programs in computer systems is becoming more widespread, so
although we might expect to be using a large fraction of the algorithms in this book, we
also might expect to have to implement only a small fraction of them. For example, the
Java libraries contain implementations of a host of fundamental algorithms. However,
implementing simple versions of basic algorithms helps us to understand them bet-
ter and thus to more effectively use and tune advanced versions from a library. More
important, the opportunity to reimplement basic algorithms arises frequently. The pri-
mary reason to do so is that we are faced, all too often, with completely new computing
environments (hardware and software) with new features that old implementations
may not use to best advantage. In this book, we concentrate on the simplest reasonable
implementations of the best algorithms. We do pay careful attention to coding the criti-
cal parts of the algorithms, and take pains to note where low-level optimization effort
could be most beneficial.

The choice of the best algorithm for a particular task can be a complicated process,
perhaps involving sophisticated mathematical analysis. The branch of computer sci-
ence that comprises the study of such questions is called analysis of algorithms. Many

CHAPTER1 ® Fundamentals

of the algorithms that we study have been shown through analysis to have excellent
theoretical performance; others are simply known to work well through experience.
Our primary goal is to learn reasonable algorithms for important tasks, yet we shall also
pay careful attention to comparative performance of the methods. We should not use
an algorithm without having an idea of what resources it might consume, so we strive
to be aware of how our algorithms might be expected to perform.

Summary of topics As an overview, we describe the major parts of the book, giv-
ing specific topics covered and an indication of our general orientation toward the
material. This set of topics is intended to touch on as many fundamental algorithms as
possible. Some of the areas covered are core computer-science areas that we study in
depth to learn basic algorithms of wide applicability. Other algorithms that we discuss
are from advanced fields of study within computer science and related fields. The algo-
rithms that we consider are the products of decades of research and development and
continue to play an essential role in the ever-expanding applications of computation.

Fundamentals (CHAPTER 1) in the context of this book are the basic principles and
methodology that we use to implement, analyze, and compare algorithms. We consider
our Java programming model, data abstraction, basic data structures, abstract data
types for collections, methods of analyzing algorithm performance, and a case study.

Sorting algorithms (CHAPTER 2) for rearranging arrays in order are of fundamental
importance. We consider a variety of algorithms in considerable depth, including in-
sertion sort, selection sort, shellsort, quicksort, mergesort, and heapsort. We also en-
counter algorithms for several related problems, including priority queues, selection,
and merging. Many of these algorithms will find application as the basis for other algo-
rithms later in the book.

Searching algorithms (CHAPTER 3) for finding specific items among large collections
of items are also of fundamental importance. We discuss basic and advanced methods
for searching, including binary search trees, balanced search trees, and hashing. We
note relationships among these methods and compare performance.

Graphs (CHAPTER 4) are sets of objects and connections, possibly with weights and
orientation. Graphs are useful models for a vast number of difficult and important
problems, and the design of algorithms for processing graphs is a major field of study.
We consider depth-first search, breadth-first search, connectivity problems, and sev-
eral algorithms and applications, including Kruskal’s and Prim’s algorithms for finding
minimum spanning tree and Dijkstra’s and the Bellman-Ford algorithms for solving
shortest-paths problems.

