Broadview PEARSON - RIKER PR

www.broadview.com.cn

Javae e

(Java SE 8hk)

Tim Lindholm
[Z] Frank Yellin =
=1 Gilad Bracha

Alex Buckley

lava Virtual Machine
fication
=

T R RRGAIT R RS £ ks

.......................

RIS mBER -

Javagnmim:
(Java SE 8hR)

The Java Virtual Machine Specification (Java SE 8 Edition)

Tim Lindholm
Frank Yellin

=] Gilad Bracha &
Alex Buckley

T F I Y & AAL
Publishing House of Electronics Industry
463 -BEUING

M &

45 Java BEAUMLEAR QI RS, AT TR T Java SEAUWLE 75 HIHOLE YT, HISE Java I
LR R LR . 4% 58, class SCRFRESR. hndk. BB EAAL. 184 BFROL TN Java HEAHLUEST
ATTEAMI ST, EEIB Java EAILA TAEFEE, 5 28R T th Java SE 8 5| ARIHHF
e, A BN SCEUAR D A 1 0 s O TR, Ak SRS R E R B T3 152 BUHE AT X class
SR RO R4, BRI T class SCHH & IR MERD & SCR 1RSSR UERTRLI .

AASHT Java SE 8, JEIRBE T R Java HEALWLAN Java 15 & SCBUAR 1 MR HEESE .

Original edition, entitled Java Virtual Machine Specification, Java SE 8 Edition, 9780133905908 by Tim Lind-
holm,Frank Yellin,Gilad Bracha,Alex Buckley, published by Pearson Education, Inc., publishing as Addison-
Wesley, Copyright © 2014 Pearson Education,Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the Pegple’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

A SO EN MR AT AR Pearson Education $% Az H R H RSIE BN A R 2% =145 - L Tl iRl
ik, RABMME BB I, AHLMER LRI SIS RABRERD .

FAS LR ERESEAN (R A v, I R ST A M S I #E %1
A5 ENISUN AT Pearson Education 1 SF IHRLSSHIBOCHS Db, TmoE& A 141k,
WA B A RIS B9 01-2015-6102

BBERRE (COP) 28

Java EHIMLILTE . Java SE 8 it =The Java Virtual Machine Specification, Java SE 8 Edition el ()
%/’ (Lindholm,T.) %3, — dbxt. W TLilkiihitk, 20164

USATREE)

ISBN 978-7-121-27305-6

L @1 @ #k-IL @ JAVA iE 3 - BFikiE — %3 1v. © TP312

rp [iR A [451 CIP % (2015) 55 231508 5

FRgwiR . skER X =

TG R

Bl R =ik En A PR

4T =HSLKENSARA W

HRR K AT B Tl H AR

‘ st H A 173 (5% hB4R: 100036
A, 787x9801/16 Efgk. 37.5 FH. 720 TF

hi W 2016 4F 4 HE 1Rk

El k. 2016 4F 4 HE5 1 kENRI

% ffr: 108.00 7T

FLFT IS L ol R A5 A B AR), i 1 WSS R R, A5 B, 1§ AR R AT R,
I Z B B L% (010) 88254888,

R B IFIE R B EE Zts@phei.com.cn, AR IE K MR % dbgg@phei.com.cn,

AR %5 sk (010) 88258888,

_ﬁ&ﬁ.—l—

S R T P e R R

il

A AR5 T 1 2011 4 %A Java SE 7 MUZ 5 FT A MIBTA ML, BESE, T 5 LI
Java BERVWLSZBURIDCIS, AAREERIN T AR RSl o

R SR MR, AU A TG4 Java HEALHL, TIAESEBLELARI Java READLET
A AE TR . Java BESIBLA SCELL AU BL I A BTSURLE (RAXAER A A6 ZE
A 3ZMR .

Xt Java SE 8 M5, Java SRFRE L — S H B ARLTE Java K AL b R A AR A B
TR B SR, TR L HEAE Java HERIWL B AR E 2 AR IR A, T
TR TR, AR TE R AR R L R B i Z RS AL WEST, IR
e th A5 T BESE T B4 19 class SO, 7E1it JSR 335——Lambda Expressions for the Java
Programming Language ((Java i 5 (1) lambda Fik3L)) B, Oracle /A] # Dan Smith
LS B R) T A RN T R B R MR T RR G | ik S E ORI I
DI S i H A g AT 2. JSR 335 L AR VFAE class SCHFZRIAKHE 1L B private Vi
e static ik, TRy A O 7 AT R s R A SRR T

Java SE 8 [Z—J&: Java SE AT PELAEREE Java L. AN
617 T AR AT M AT — 45 . B AT IR, Java SE 8 7T LIRBUT KNS HA HE
FUHL 2O I B 4 A7 HUTE class SCfEgERg R, TSRS, java.ang.reflect.Parameter A
AFRUERY APT BERSAHXEE S, 7, S50, Tl iT LIGE T class S T — I RIS
WO AP A A ABIIE 0SS 1 MR SE ST 6 MR, HR A 3 NRIERT Java MEAUBL
ZETE, [l Java SE 8 BAOHFEINGE XL T 23 Mm@k, Horb A 5 AR Java HEFILAR E
B RN, (ERTROIGT, R EERN T SRR, AR T3
Java RERUDLAC B, N T B AR class SCPFSH, A KL £ 5 T M S 3R U
(¥ £ e R Aol FHRR il

7E Oracle 23 @ Java Platform FIBAHL, 4 2o Rl AR AL T AR SEHE, i
i1424%: Mandy Chung, Joe Darcy, Joel Franck. Staffan Friberg, Yuri Gaevsky, Jon Gibbons,
Jeannette Hung, Eric McCorkle | Matherey Nunez. Mark Reinhold, John Rose, Georges Saab .
Steve Sides . Bernard Traversat . Michel Trudeau il Mikael Vidstedto FE BB Dan Heidinga(IBM) |
Karen Kinnear. Keith McGuigan } Harold Seigel X # WL Java FE ML B b B Fe A B 4
] AR B TR

Alex Buckley
S RLEE =Y TUE SR o2
2014 53 A

His xiii

Introduction 1

A Bit of History 1

The Java Virtual Machine 2

Organization of the Specification 3 '
Notation 4

Feedback 4

—
wnh W —

The Structure of the Java Virtual Machine 5

2.1 The class File Format 5
2.2 Data Types 6
23 Primitive Types and Values 6
2.3.1 Integral Types and Values 7
232 Floating-Point Types, Value Sets, and Values 8
2.3.3 The returnaddress Type and Values 10
2.34 Theboolean Type 10
2.4 Reference Types and Values 11
2.5 Run-Time Data Areas 11
2.5.1 The pc Register 12
' 2.5.2 Java Virtual Machine Stacks 12
2.53 Heap 13
2.54 Method Area 13
2.5.5 Run-Time Constant Pool 14
2.5.6 Native Method Stacks 14
2.6 Frames 15
2.6.1 Local Variables 16
2.6.2 Operand Stacks 17
2.6.3 Dynamic Linking 18
2.6.4 Normal Method Invocation Completion 18
2.6.5 Abrupt Method Invocation Completion 18
2.7 Representation of Objects 19
2.8 Floating-Point Arithmetic 19
2.8.1 Java Virtual Machine Floating-Point Arithmetic and IEEE
754 19
2.8.2 Floating-Point Modes 20
2.8.3 Value Set Conversion 20
2.9 Special Methods 22
2.10 Exceptions 23
2.11 Instruction Set Summary 25

2.11.1 Types and the Java Virtual Machine 26

2.11.2 Load and Store Instructions 29

2.11.3 Arithmetic Instructions 30

2.11.4 Type Conversion Instructions 32

2.11.5 Object Creation and Manipulation 34

2.11.6 Operand Stack Management Instructions 34
2.11.7 Control Transfer Instructions 34

2.11.8 Method Invocation and Return Instructions 35

2.11.9 Throwing Exceptions 36
2.11.10 Synchronization 36

Class Libraries 37

Public Design, Private Implementation 37

Compiling for the Java Virtual Machine 39

3.1 Format of Examples 39

3.2 Use of Constants, Local Variables, and Control Constructs 40
3.3 Arithmetic 45

3.4 Accessing the Run-Time Constant Pool 46
3.5 More Control Examples 47

3.6 Receiving Arguments 50

3.7 Invoking Methods 51

3.8 Working with Class Instances 53

3.9 Arrays 55

3.10 Compiling Switches 57

3.11 Operations on the Operand Stack 59

3.12 Throwing and Handling Exceptions 60
3.13 Compiling finally 63

3.14 Synchronization 66

3.15 Annotations 67

The class File Format 69

4.1 The classrile Structure 70
42 The Internal Form of Names 74
42.1 Binary Class and Interface Names 74
422 Unqualified Names 75
4.3 Descriptors 75
43.1 Grammar Notation 75
43.2 Field Descriptors 76
433 Method Descriptors 77
4.4 The Constant Pool 78
4.4.1 The CONSTANT Class_info Structure 79
442 The CONSTANT Fieldref info, CONSTANT Methodref info, and
CONSTANT InterfaceMethodref info Structures 80
443 The CONSTANT String_info Structure 81
4.4.4 The CONSTANT Integer_ info and CONSTANT Float_info
Structures 82

4.5
4.6
4.7

4.8
4.9

4.10

B

4.4.5 The CONSTANT Long info and CONSTANT Double info
Structures 83
44.6 The CONSTANT NameAndType info Structure 85
447 The cONSTANT Utf8 info Structure 85
4.4.8 The CONSTANT MethodHandle info Structure 87
449 The CONSTANT MethodType info Structure 89
4.4.10 The CONSTANT InvokeDynamic info Structure 89
Fields 90
Methods 92
Attributes 95
4.7.1 Defining and Naming New Attributes 101
4,72 The constantvalue Attribute 101
4.7.3 The code Attribute 102 .
4.7.4 The stackMapTable Attribute 106
4.7.5 The Exceptions Attribute 113
4.7.6 The Innerclasses Attribute 114
4.7.7 The EnclosingMethod Attribute 116
4.7.8 The synthetic Attribute 118
4.79 The signature Attribute 118
4.79.1 Signatures 119
4.7.10 The sourcerile Attribute 123
4.7.11 The sourceDebugExtension Attribute 124
4.7.12 The LineNumberTable Attribute 124
4.7.13 The LocalvariableTable Attribute 126
4.7.14 The LocalVariableTypeTable Attribute 128
4.7.15 The peprecated Attribute 129
4.7.16 The RuntimevVisibleAnnotations Attribute 130
4.7.16.1 The element value structure 132
4.7.17 The RuntimeInvisibleAnnotations Attribute 135
47.18 The RuntimeVisibleParameterAnnotations Attribute 136
4.7.19 The RuntimeInvisibleParameterAnnotations Attribute 137
4,720 The RuntimeVisibleTypeAnnotations Attribute 139
4.7.20.1 The target infounion 144
4.7.20.2 The type path structure 148
4721 The RuntimelInvisibleTypeAnnotations Attribute 152
4.7.22 The AnnotationDefault Attribute 153
4.7.23 The BootstrapMethods Attribute 154
4.7.24 The MethodParameters Attribute 156
Format Checking 158
Constraints on Java Virtual Machine Code 159
4.9.1 Static Constraints 159
49.2 Structural Constraints 163
Verification of c1ass Files 166
4.10.1 Verification by Type Checking 167
4.10.1.1 Accessors for Java Virtual Machine Artifacts 169
4.10.1.2 Verification Type System 173
4.10.1.3 Instruction Representation 177
4.10.1.4 Stack Map Frame Representation 178

vii

A&

Type Checking Abstract and Native Methods 184

Type Checking Methods with Code 187

. Type Checking Load and Store Instructions 194
4.10.1.8 Type Checking for protected Members 196
4.10.1.9 Type Checking Instructions 199

4.10.2 Verification by Type Inference 319
4.10.2.1 The Process of Verification by Type Inference 319
4.10.2.2 The Bytecode Verifier 319
4.10.2.3 Values of Types 1long and double 323
4.10.2.4 Instance Initialization Methods and Newly Created
Objects 323

4.10.2.5 Exceptions and finally 325

4.11 Limitations of the Java Virtual Machine 327

B
Con
Soo
Pk j— f—
NN W

5 Loading, Linking, and Initializing 329

5.1 The Run-Time Constant Pool 329
5.2 Java Virtual Machine Startup 332
53 Creation and Loading 332
5.3.1 Loading Using the Bootstrap Class Loader 334
5.3.2 Loading Using a User-defined Class Loader 335
5.3.3 Creating Array Classes 336
53.4 Loading Constraints 336
5.3.5 Deriving a Class from a class File Representation 338
54 Linking 339
5.4.1 Verification 340
5.4.2 Preparation 340
543 Resolution 341
5.4.3.1 Class and Interface Resolution 342
5.43.2 Field Resolution 343
5.4.3.3 Method Resolution 344
54.3.4 Interface Method Resolution 346
54.3.5 Method Type and Method Handle Resolution 347
5.4.3.6 Call Site Specifier Resolution 350
544 Access Control 351
5.4.5 Overriding 352
55 Initialization 352
5.6 Binding Native Method Implementations 355
5.7 Java Virtual Machine Exit 355

6 The Java Virtual Machine Instruction Set 357

6.1 Assumptions: The Meaning of "Must" 357
6.2 Reserved Opcodes 358
6.3 Virtual Machine Errors 358
6.4 Format of Instruction Descriptions 359
mnemonic 360
6.5 Instructions 362
aaload 363

viii

aastore 364
aconst_null 366
aload 367
aload <n> 368
anewarray 369
areturn 370
arraylength 371
astore 372
astore_<n> 373
athrow 374
baload 376
bastore 377
bipush 378
caload 379
castore 380
checkcast 381
d2f 383

d2i 384

d2l 385

dadd 386
daload 388
dastore 389
demp<op> 390
dconst_<d> 392
ddiv 393

dload 395
dload <n> 396
dmul 397
dneg 399

drem 400
dreturn 402
dstore 403
dstore_<n> 404
dsub 405

dup 406
dup x1 407
dup x2 408
dup2 409
dup2 x1 410
dup2 x2 411
f2d 413

f2i 414

f21 415

fadd 416
faload 418
fastore 419
femp<op> 420
feonst <f> 422

B &

ix

A%

fdiv 423

fload 425

fload <n> 426
fmul 427

fneg 429

frem 430
freturn 432
fstore 433

fstore <n> 434
fsub 435
getfield 436
getstatic 438
goto 440
goto_ w 441

i2b 442

i2c 443

i2d 444

i2f 445

i2l 446

i2s 447

iadd 448

iaload 449

iand 450

iastore 451
iconst_<i> 452
idiv 453

if acmp<cond> 454
if icmp<cond> 455
if<cond> 457
ifnonnull 459
ifnull 460

iinc 461

iload 462

iload <n> 463
imul 464

ineg 465
instanceof 466
invokedynamic 468
invokeinterface 473
invokespecial 477
invokestatic 481
invokevirtual 484
ior 489

irem 490

ireturn 491

ishl 492

ishr 493

istore 494

istore_<n> 495
isub 496

iushr 497

ixor 498

Jjsr 499

jsr_w 500

12d 501

12f 502

12i 503

ladd 504
laload 505
land 506
lastore 507
lemp 508
lconst_<I> 509
lde 510

lde w 512
ldc2 w 514
Idiv 515

lload 516
lload <n> 517
Imul 518

Ineg 519
lookupswitch 520
lor 522

lrem 523
lreturn 524
Ishl 525

Ishr 526

Istore 527
Istore_<n> 528
Isub 529

lushr 530

Ixor 531
monitorenter 532
monitorexit 534

multianewarray 536

new 538
newarray 540
nop 542
pop 543
pop2 544
putfield 545
putstatic 547
ret 549
return 550
saload 551
sastore 552

A%

xii

sipush 553
swap 554
tableswitch 555
wide 557

7 Opcode Mnemonics by Opcode 559
Index 563

A Limited License Grant 581

CHAPTER 1

Introduction

1.1 A Bit of History

The Java® programming language is a general-purpose, concurrent, object-oriented
language. Its syntax is similar to C and C++, but it omits many of the features that
make C and C++ complex, confusing, and unsafe. The Java platform was initially
developed to address the problems of building software for networked consumer
devices. It was designed to support multiple host architectures and to allow secure
delivery of software components. To meet these requirements, compiled code had
to survive transport across networks, operate on any client, and assure the client
that it was safe to run.

The popularization of the World Wide Web made these attributes much more
interesting. Web browsers enabled millions of people to surf the Net and access
media-rich content in simple ways. At last there was a medium where what you
saw and heard was essentially the same regardless of the machine you were using
and whether it was connected to a fast network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML
document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
all the features users wanted. Extensibility was the answer.

The Hotlava browser first showcased the interesting properties of the Java
programming language and platform by making it possible to embed programs
inside HTML pages. Programs are transparently downloaded into the browser
along with the HTML pages in which they appear. Before being accepted by the
browser, programs are carefully checked to make sure they are safe. Like HTML
pages, compiled programs are network- and host-independent. The programs
behave the same way regardless of where they come from or what kind of machine
they are being loaded into and run on.

INTRODUCTION

A Web browser incorporating the Java platform is no longer limited to a
predetermined set of capabilities. Visitors to Web pages incorporating dynamic
content can be assured that their machines cannot be damaged by that content.
Programmers can write a program once, and it will run on any machine supplying
a Java run-time environment.

1.2 The Java Virtual Machine

The Java Virtual Machine is the cornerstone of the Java platform. It is the
component of the technology responsible for its hardware- and operating system-
independence, the small size of its compiled code, and its ability to protect users
from malicious programs.

The Java Virtual Machine is an abstract computing machine. Like a real computing
machine, it has an instruction set and manipulates various memory areas at run time.
It is reasonably common to implement a programming language using a virtual
machine; the best-known virtual machine may be the P-Code machine of UCSD
Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated the Java Virtual Machine instruction set in software
hosted by a handheld device that resembled a contemporary Personal Digital
Assistant (PDA). Oracle's current implementations emulate the Java Virtual
Machine on mobile, desktop and server devices, but the Java Virtual Machine
does not assume any particular implementation technology, host hardware, or
host operating system. It is not inherently interpreted, but can just as well be
implemented by compiling its instruction set to that of a silicon CPU. It may also
be implemented in microcode or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only
of a particular binary format, the class file format. A class file contains Java
Virtual Machine instructions (or byfecodes) and a symbol table, as well as other
ancillary information.

For the sake of security, the Java Virtual Machine imposes strong syntactic and
structural constraints on the code in a class file. However, any language with
functionality that can be expressed in terms of a valid c1ass file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-independent
platform, implementors of other languages can turn to the Java Virtual Machine as
a delivery vehicle for their languages.

Organization of the Specification

The Java Virtual Machine specified here is compatible with the Java SE 8 platform,
and supports the Java programming language specified in The Java Language
Specification, Java SE 8 Edition.

1.3 Organization of the Specification

Chapter 2 gives an overview of the Java Virtual Machine architecture.

Chapter 3 introduces compilation of code written in the Java programming
language into the instruction set of the Java Virtual Machine.

Chapter 4 specifies the ciass file format, the hardware- and operating system-
independent binary format used to represent compiled classes and interfaces.

Chapter 5 specifies the start-up of the Java Virtual Machine and the loading, linking,
and initialization of classes and interfaces.

Chapter 6 specifies the instruction set of the Java Virtual Machine, presenting the
instructions in alphabetical order of opcode mnemonics.

Chapter 7 gives a table of Java Virtual Machine opcode mnemonics indexed by
opcode value.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 2
gave an overview of the Java programming language that was intended to support
the specification of the Java Virtual Machine but was not itself a part of the
specification. In The Java Virtual Machine Specification, Java SE 8 Edition, the
reader is referred to The Java Language Specification, Java SE 8 Edition for
information about the Java programming language. References of the form: (JLS
§x.y) indicate where this is necessary.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 8
detailed the low-level actions that explained the interaction of Java Virtual Machine
threads with a shared main memory. In The Java Virtual Machine Specification,
Java SE 8 FEdition, the reader is referred to Chapter 17 of The Java Language
Specification, Java SE 8 Edition for information about threads and locks. Chapter
17 reflects The Java Memory Model and Thread Specification produced by the JSR
133 Expert Group.

1.3

INTRODUCTION

1.4 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE platform API. Whenever we refer to a class or interface (other than those
declared in an example) using a single identifier &, the intended reference is to the
class or interface named N in the package java.lang. We use the fully qualified
name for classes or interfaces from packages other than java.1lang.

Whenever we refer to a class or interface that is declared in the package java or
any of its subpackages, the intended reference is to that class or interface as loaded
by the bootstrap class loader (§5.3.1).

Whenever we refer to a subpackage of a package named java, the intended
reference is to that subpackage as determined by the bootstrap class loader.

The use of fonts in this specification is as follows:

* A fixed width font is used for Java Virtual Machine data types, exceptions,
errors, class file structures, Prolog code, and Java code fragments.

* ltalic is used for Java Virtual Machine "assembly language", its opcodes and
operands, as well as items in the Java Virtual Machine's run-time data areas. It is
also used to introduce new terms and simply for emphasis.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

This is non-normative information. It provides intuition, rationale, advice, examples, etc.

1.5 Feedback

Readers may send feedback about errors, omissions, and ambiguities in this
speciﬁcation t0 jvms-comments ww@oracle.com.

Questions concerning the generation and manipulation of c1ass files by javac (the
reference compiler for the Java programming language) may be sent to compiler-
dev@openjdk.java.net.

CHAPTERZ

The Structure of the Java
Virtual Machine

THIS document specifies an abstract machine. It does not describe any particular
implementation of the Java Virtual Machine.

To implement the Java Virtual Machine correctly, you need only be able to read
the class file format and correctly perform the operations specified therein.
Implementation details that are not part of the Java Virtual Machine's specification
would unnecessarily constrain the creativity of implementors. For example, the
memory layout of run-time data areas, the garbage-collection algorithm used, and
any internal optimization of the Java Virtual Machine instructions (for example,
translating them into machine code) are left to the discretion of the implementor.

All references to Unicode in this specification are given with respect to The
Unicode Standard, Version 6.0.0, available at http://www.unicode.org/.

2.1 The c1ass File Format

Compiled code to be executed by the Java Virtual Machine is represented using
a hardware- and operating system-independent binary format, typically (but not
necessarily) stored in a file, known as the c1ass file format. The c1ass file format
precisely defines the representation of a class or interface, including details such
as byte ordering that might be taken for granted in a platform-specific object file
format.

Chapter 4, "The class File Format", covers the class file format in detail.

