

工业和信息化部 "十二五" 规划专著

航天发射科学与技术

航天发射场总体设计

SYSTEMATIC DESIGN FOR SPACE LAUNCH SITE

万 全 王东锋 刘占卿 张桂洪 编著

🔟 北京理工大学出版社

BEIJING INSTITUTE OF TECHNOLOGY PRESS

国家出版基金项目

工业和信息化部"十二五"规划专著

航天发射科学与技术

航天发射场总体设计

SYSTEMATIC DESIGN FOR SPACE LAUNCH SITE

万 全 王东锋 刘占卿 张桂洪 编著

BEIJING INSTITUTE OF TECHNOLOGY PRESS

内容简介

本书是"航天发射科学与技术"系列丛书之一。全书共分9章,分别是绪论、航天测试 发射工艺流程、发射场总体规划、发射场主要设施设计、推进剂加注供气系统、技术勤务系统、航天测试发射指挥监控系统设计、发射场系统可靠性设计、推进剂污染治理与环境防护。

本书从航天发射场从事运载火箭和航天器的测试发射工作出发,系统介绍了发射场的结构组成、测试发射工艺流程,发射场总体布局与主要设施、功能子系统的设计等基本知识。

本书可以作为航天领域相关人员的技术参考资料,也可以作为航天测试发射专业的学生 参考用书。

版权专有 侵权必究

图书在版编目 (CIP) 数据

航天发射场总体设计 / 万全等编著. —北京:北京理工大学出版社, 2015.6 (航天发射科学与技术) 国家出版基金项目 工业和信息化部"十二五"规划专著 ISBN 978-7-5682-0749-2

I. ①航… Ⅱ. ①万… Ⅲ. ①航天器发射场-总体设计 N. ①V552

中国版本图书馆 CIP 数据核字(2015) 第134269号

-		
出版	定行 / 北京理工大学出版社有限责任公司	
社	址 / 北京市海淀区中关村南大街 5 号	
邮	编 / 100081	
电	话 / (010) 68914775 (总编室)	
	(010) 82562903 (教材售后服务热线)	
	(010) 68948351 (其他图书服务热线)	
XX	址 / http: //www.bitpress.com.cn	
经	销 / 全国各地新华书店	
印	刷 / 北京地大天成印务有限公司	
开	本 / 787 毫米×1092 毫米 1/16	
印	张 / 31	责任编辑 / 封 雪
字	数 / 597 千字	文案编辑 / 杜春英
版	次 / 2015 年 6 月第 1 版 2015 年 6 月第 1 次印刷	责任校对 / 周瑞红
定	价 / 118.00 元	责任印制 / 王美丽

图书出现印装质量问题,请拨打售后服务热线,本社负责调换

航天发射科学与技术 ≡ 编写委员会

- 名誉主编:于本水 黄瑞松 刘衍生
- 主 编:杨树兴 包元吉
- 副主编:(按姓氏笔画排序)
 - 万全 王生捷 刘浩姜毅 胡习明 贺卫东
 - 葛令民
- 编 委: (按姓氏笔画排序)

于殿君	王东锋	邓 科
朱恒强	刘占卿	汤元平
李建冬	李 梅	何家声
赵瑞兴	荣吉利	党海燕
傳德彬	路峰	谭大成

航天发射科学与技术 ≡ 学术顾问委员会

(按姓氏笔画排序)

丁旭昶	于倩	于建平
王缜	牛养慈	任跃进
刘淑艳	李喜仁	张泽明
陈亚军	陈登高	周凤广
赵长禄	郝志忠	秦 烨
唐胜景	曾智勇	

IIII GENERAL PERFACE

世界各国为了进一步提高综合国力,都在大力开发空间资源和 加强国防建设。作为重要运载器的火箭、导弹,以及相关的发射科 学技术,也相应地都得到了广泛的重视。发射科学技术综合了基础 科学和其他应用科学领域的最新成就,以及工程技术的最新成果, 是科学技术和基础工业紧密结合的产物。同时,发射科学技术也反 映了一个国家相关科学技术和基础工业的发展水平。

航天发射科学技术的发展历史漫长,我国古代带火的弓箭便是 火箭的雏形。火箭出现后,被迅速用于各种军事行动和民间娱乐。 随着现代科学技术的发展和人类需求的增加,美国、俄罗斯、中国、 日本、法国、英国等航天大国,投入了大量的人力、物力进行航天 发射的研究和开发,并取得了丰硕成果,代表了世界的先进水平。 火箭、导弹的发射水平,决定了一个国家航天活动和国防保障区域 的范围。因此,各航天大国均把发展先进的发射和运载技术作为保 持其领先地位的战略部署之一。无论是空间应用、科学探测、载人 航天、国际商业发射与国际合作,还是国防建设,都对发射技术提 出了新的要求,促使航天发射科学技术向着更高层次发展。

综上所述,系统归纳、总结发射领域的理论和技术成果,供从 事相关领域教学、研发、设计、使用人员学习和参考,具有重要的 意义。这对提高教育水平、提升技术能力、推动科学发展和提高航 天发射领域的研发水平将会起到十分重要的作用。

航天发射科学技术构成复杂,涉及众多学科,而且内容广泛, 系列丛书的编写需要有关领域的专家、学者来共同完成。因此,北 京理工大学、北京航天发射技术研究所、北京机械设备研究所、北 京特种机械研究所、总装备部工程设计研究院等国内从事相关领域 研究的权威单位组建了本丛书的作者队伍,期望将发射科学技术的

1 -----

重要成果著作成册,帮助读者更深入地了解和掌握航天发射领域的 知识和技术,推动我国航天事业的发展。

本丛书力求系统性、完整性、实用性和理论性的统一,从发射 总体技术、发射装置、地面支持技术、发射场总体设计、发射装置 设计、发射控制技术、发射装置试验技术、发射气体动力学、发射 动力学、弹射内弹道学等多个相互支撑的学科领域,以发射技术基 本理论,火箭、导弹发射相关典型系统和设备为重点,全面介绍国 内外的相关技术和设备、设施。

本丛书作者队伍是一个庞大的教育、科研、设计团队,为了编 写好本丛书,编写人员辛勤劳动,做出了很大努力。同时,得到了 相关学会,以及从事编写的五个单位的领导、专家及工作人员的关 心和大力支持,在此深表感谢!由于种种原因,书中难免存在不当 之处,敬请读者批评指正!

编写委员会

■ PREFACE 言

发射人造卫星、载人航天器和空间探测器等各类航天器的航天发 射试验,是世界各国开发太空资源、展示国防科技实力的标志性活动。 航天发射离不开航天发射场。航天发射场是为航天器和运载器进行装 配、测试、贮存、运输、发射、弹道测量、发送控制指令,以及接收 和处理遥测信息的特定场所,是运载火箭和卫星、飞船脱离地球引力 飞向太空的最后一站。在以卫星为中心的航天工程各个组成系统中, 航天发射场系统具有独特的地位和作用。

航天发射场的建设和发展与航天器、运载器的发展和需求密切相 关。随着人类探索宇宙的足迹由近地空间向深空拓展,运载工具由早 期的战术导弹到现代大型火箭,发射场也由早期的简易导弹发射靶场 逐渐发展为功能完善、设施配套的综合类试验场,能够完成多型运载 器和不同质量、不同运行轨道航天器的测试发射,形成了一个个各具 特色的航天"卫星城"。航天发射场通常由测试区、发射区、发射指 挥控制中心、综合测量设施、各勤务保障设施和一些管理服务部门组 成。某些航天器发射场还包括助推火箭或运载火箭第一级工作完成后 的坠落区和再入航天器(如航天飞机的轨道器)或(卫星、飞船)回 收舱的着陆(溅落)区。载人航天发射场还包括针对航天员发射前测 试准备的专用区域。

航天发射场通常还配备有整套的地面发射设施和测量控制、通信 指挥设备。按照我国航天发射场的惯例,将发射场的全部设备分为专 用技术设备和通用技术设备。专用技术设备包括:运输设备、起重装 卸设备、装配对接设备、地面供电设备、地面检测和发射用电气设备、 自动控制设备、推进剂贮存和加注设备、废气和废液处理设备、发射 勤务设备、遥控和监控设备、测量和数据处理设备。通用技术设备包 括:动力、通信、气象、计量、给排水、供气、消防、修理等设备。 除了运载器和航天器发射前测试准备工作的设施设备,航天发射场在 场址选择、安全布局、工作流程、发射项目管理,以及发射任务的组 织指挥等方面,均与各国航天水平和发射场的定位相对应,具有鲜明 的国家特色。

本书内容是关于发射场的场区规划和设施建设的,重点围绕与航 天器和运载器的测试发射相关的发射场设施和功能展开介绍,不包括 发射组织指挥和测量控制系统的内容。全书共分为9章:第1章绪论, 主要介绍了航天发射场的基本概念、功能与组成,从总体设计的角度 提出本书涵盖的知识范围; 第2章从过程和项目管理的角度, 介绍了 与航天测试发射工艺流程相关的内容,基于常用的几种模式,重点阐 述了流程的选择和设计; 第3章是发射场总体规划, 介绍了从场址选 择、首区安全布局到航落区的设计等方面的内容; 第4章选取了发射 场技术区和发射区的主要设施,从工程设计的角度介绍了设施的功 能、组成及测试内容; 第5章介绍了推进剂加注供气系统, 分别从推 进剂的类型、贮存、使用和加注系统设计等方面,介绍了极具航天发 射特点的一个系统; 第6章从航天通用技术设备的角度, 重点介绍 了供配电、空调、消防、气象等勤务保障系统中与航天发射任务相 关的功能与设计内容; 第7章是航天测试发射指挥监控系统设计, 主要包括任务组织指挥、系统监控的功能设计、接口、显示、决 策等关键技术; 第8章从发射场地面设备使用保障的角度, 介绍 了发射场系统的可靠性分析设计与管理的相关内容: 第9章是推 进剂污染治理与环境防护,介绍了生态环保和污染物治理方面的 相关知识。

本书由总装备部工程设计研究院张泽明策划、万全牵头组织,由 万全、王东锋、刘占卿、张桂洪合著完成。其中第1、9章由万全撰 写,第4、6、8章由王东锋撰写,第3、5章由刘占卿撰写,第2、7 章由张桂洪撰写。此外,陈洪琪、孙俊德、刘鹰、孙庆国、崔展鹏、 朱曼利、张晓萍、陈虹、董明、李孟源、马文等参与了本书部分内 容的编写,赵晨提供了部分插图。

总装备部工程设计研究院的孙雅度高级工程师在百忙中对本书 进行了审查,赵国强高级工程师、薛晓光博士、王黎沁工程师、方世 源工程师分别对相关章节进行了审校并提出了许多宝贵的修改意见, 在此一并表示衷心感谢。编写过程中还得到了其他多位领导和同行的 悉心指正,名字无法一一列出,也在此一并致谢! 本书涉及航天测试发射和工程规划建设等领域,具有综合性和针对性。

由于作者水平有限,错误在所难免,敬请读者批评指正。

编者

2015年5月

日录 CONTENTS

第1章 纟	者论
1.1 航	天发射知识
1.1.1	基本概念
1.1.2	航天发射方式
1.1.3	航天发射的特点与要求4
1.2 航	天发射场
1.2.1	发射场的概念
1.2.2	发射场的组成与功能
1.3 世	界主要航天发射场
1.3.1	国外发射场
1.3.2	国内发射场
1.4 发!	射场总体设计
1.4.1	总体设计内容
1.4.2	总体设计要求
1.4.3	确定总体技术指标
1.4.4	论证测试发射工艺流程
1.4.5	开展发射场论证规划
1.4.6	主要设施和系统设计
第2章 舟	航天测试发射工艺流程 ····································
2.1 概述	迷
2.2 测算	发工艺流程论证
2.2.1	论证设计内容
2.2.2	论证设计输入
2.2.3	程序和要求

2.2.4	测试发射模式的选择
2.3 测力	发工艺流程图编制
2.3.1	构成与符号
2.3.2	基本规范
2.3.3	工作类型的拓展
2.4 测记	式发射模式和流程示例
2.4.1	俄罗斯"质子号"火箭46
2.4.2	美国"德尔它Ⅳ"系列火箭48
2.4.3	美国 39 号发射场
2.4.4	"阿里安 5"运载火箭
2.4.5	"长征三号甲"火箭
2.5 测分	发工艺流程优化
2.5.1	流程优化设计步骤55
2.5.2	流程优化方法
2.5.3	测试发射工艺流程的分析评价57
第3章 发	定射场总体规划
3.1 概論	盘 ······64
3.1.1	导弹试验靶场与航天发射场64
3.1.2	发射场总体设计的安全性要求65
3.2 发身	射场选址
3.2.1	发射场选址的重要性67
3.2.2	发射场选址的基本要素和准则69
3.2.3	发射工位的定点
3.3 发身	射场布局
3.3.1	发射场功能分区
3.3.2	总体布局设计
3.4 发身	射场安全
3.4.1	发射场主要危险源
3.4.2	发射场布局安全的基本要求
3.4.3	发射台爆炸安全距离计算95
3.4.4	有毒推进剂扩散范围的确定100
3.5 运载	战火箭航落区
3.5.1	火箭残骸对地破坏力102

3.5.2	航区火箭残骸落点计算
3.5.3	火箭残骸落区安全准则
第4章 发	发射场主要设施设计 ·······104
4.1 工社	程勘察与设计
4.1.1	方案设计
4.1.2	初步设计
4.1.3	施工图设计106
4.1.4	后期技术服务
4.2 技法	术区设施
4.2.1	技术区的功能
4.2.2	火箭水平转载准备厂房109
4.2.3	航天器总装测试厂房
4.2.4	航天器加注扣罩厂房
4.2.5	垂直总装测试厂房
4.2.6	辅助设施
4.3 发势	射区设施
4.3.1	发射区的功能
4.3.2	航天发射塔
4.3.3	导流槽
4.3.4	辅助设施
第5章 打	<mark>崔进剂加注供气系统</mark> ·······141
5.1 推进	进剂的类型与品质
5.1.1	推进剂的类型
5.1.2	偏二甲肼
5.1.3	四氧化二氮
5.1.4	液氧
5.1.5	液氢
5.1.6	航天煤油
5.2 推进	进剂加注系统的分类组成
5.2.1	推进剂加注系统的要求156
5.2.2	推进剂的加注方式
5.2.3	加注系统的分类

5.2.4	加注系统的组成158
5.2.5	加注系统的设计159
5.3 常治	温推进剂加注系统
5.3.1	加注工序和流程的设计160
5.3.2	加注系统设计164
5.3.3	加注系统布局
5.3.4	加注系统的主要设备172
5.4 低清	温推进剂加注系统
5.4.1	加注工序和流程设计183
5.4.2	加注工艺设计
5.4.3	加注系统布局
5.4.4	主要低温加注设备196
5.5 推进	进剂的生产、贮存和运输
5.5.1	推进剂的生产210
5.5.2	推进剂的贮存与运输215
5.6 供	气系统设计
5.6.1	供气系统的作用和特点218
5.6.2	压缩气体的制备220
5.6.3	高压气体的供配气227
5.6.4	移动供气设备
第6章 打	支术勤务系统
6.1 供酬	配电系统
6.1.1	供配电系统的基础知识240
6.1.2	变电站和供配电系统设计249
6.1.3	发射场的雷电防护258
6.2 空计	周系统
6.2.1	空调的分类
6.2.2	空调系统的相关参数
6.2.3	空调系统的组成
6.2.4	发射场空调系统的分布
6.2.5	发射场的空调节能技术271
6.3 消日	防系统
6.3.1	火灾的分类

6.3.2	消防系统的组成	
6.3.3	发射场的消防系统	
6.3.4	消防系统设计要点	
6.4 其	他勤务系统	
6.4.1	气象监测与预测预报	
6.4.2	通信系统	
6.4.3	机械非标设备	
6.4.4	大地测量	
6.4.5	计量设备	
第7音	航天测试发射指挥收控玄统设计	
71 框	える。	
7.1 194	发展历程	
7.1.1	又水川仁 系统任备······	
7.1.2	系统功能·····	
7.1.4	技术要求	
7.1.5	适用的标准规范	
7.2 测	发指挥监控系统设计	
7.2.1	设计阶段和内容	
7.2.2	体系结构设计	
7.2.3	分系统设计	
7.3 测	发指挥监控系统关键技术	
7.3.1	标准数据接口设计	
7.3.2	基于图元构建技术的通用指显设计	
7.3.3	辅助决策技术	
第8章	发射场系统可靠性设计	
81 前	言	
8.2 可	 靠性要求	
821	可靠性定性要求	
8 2 2	可靠性定量要求	
8 2 3	可靠性设计参数	
8.3 可	靠性分析设计	
8.3.1	可靠性设计内容	

8.3.2	可靠性设计流程	
8.3.3	系统功能分解	
8.3.4	可靠性指标论证	
8.3.5	可靠性建模	
8.3.6	可靠性分配	
8.3.7	可靠性预计	
8.3.8	故障模式与影响分析	
8.3.9	故障树分析	
8.3.10	元器件选型和重要件控制	
8.3.11	可靠性试验评估	
8.3.12	可靠性设计方法	
8.4 可靠	靠性管理	
8.4.1	可靠性管理的内容	
8.4.2	可靠性组织管理	401
8.4.3	可靠性评审	403
8.4.4	建立和实施故障报告、分析与纠正措施系统	405
8.4.5	可靠性数据采集与管理	
8.4.6	可靠性会签	406
8.4.7	可靠性培训	407
第9章 推	佳进剂污染治理与环境防护	
9.1 概述	戱 ·····	
9.1.1	污染的种类	408
9.1.2	发射场推进剂污染源	409
9.1.3	推进剂毒性及中毒症状	
9.1.4	推进剂对环境的污染	
9.2 推訪	进剂废气废液污染治理	416
9.2.1	废气污染治理	416
9.2.2	废液污染治理	
9.2.3	废水污染治理	
9.2.4	烃类污染治理	
9.3 发射	射场环境监测	
9.3.1	监测指标的确定	436
9.3.2	监测点位的选择	437

9.3.3	环境监测的方法
9.3.4	推进剂污染的个体防护
9.4 发身	时场的生态利用······439
9.4.1	生态发射场概念
9.4.2	生态发射场的建设
参考文献·	
索引	