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Preface

... of making books there is no end, and much study is a weariness of the flesh
Koheleth (Ecclesiastes) 12:12

With the publication of Volumes III and IV we have completed our
presentation of the material which we originally planned as “Volume 11"
at the time of publication of Volume 1. We originally promised the publisher
that the entire series would be completed nine months after we submitted
Volume I. Well! We have listed the contents of future volumes below. We
are not foolhardy enough to make any predictions.

We were very fortunate to have had T. Kato and R. Lavine read and
criticize Chapters XII and X111, respectively. In addition, we received valuable
comments from J. Avron, P. Deift, H. Epstein, J. Ginibre, I. Herbst, and
E. Trubowitz. We are grateful to these individuals and others whose
comments made this book better.

We would also like to thank:

J. Avron, G. Battle, C. Berning, P. Deift, G. Hagedorn, E. Harrell, II,
L. Smith, and A. Sokol for proofreading the galley and/or page proofs.

G. Anderson, F. Armstrong, and B. Farrell for excellent typing.

The National Science Foundation, the Duke Research Council, and the
Alfred P. Sloan Foundation for financial support.

Academic Press, without whose care and assistance these volumes would
have been impossible.

Martha and Jackie for their encouragement and understanding.
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Introduction

11 libro della natura’é scritto in lingua matematica. Galileo Galilei

The first step in the mathematical elucidation of a physical theory must
be the solution of the existence problem for the basic dynamical and kine-
matical equations of the theory. Once that is accomplished, one would like
to find general qualitative features of these solutions and also to study
in detail specific special systems of physical interest.

Having discussed the general question of the existence of dynamics in
Chapter X, we present methods for the study of general qualitative features
of solutions in this volume and its companion (Volume III) on scattering
theory. We concentrate on the Hamiltonians of nonrelativistic quantum
mechanics although other systems are also treated. In Volume III, the
main theme is the long-time behavior of dynamics, especially of solutions

~which are “asymptotically free.” In this volume, the main theme involves
the five kinds of spectra defined in Sections VII.2 and VIL3: the essential
spectrum, o, ; the discrete spectrum, oy, ; the absolutely continuous
spectrum, o,; the pure point spectrum, o,,,; and the singular continuous
spectrum, dy;,,. It turns out that the study of the absolutely continuous
spectrum as well as the problem of showing that the continuous singular
spectrum is empty are intimately connected with scattering theory. Thus,
the separation of the material in Volumes III and IV is somewhat artificial.
For this reason, we preprinted in Volume III three sections from Volume IV.

ix



x INTRODUCTION

These are not the only sections in which the themes of the two volumes
overlap.

In these volumes specific systems are usually presented to illustrate the
application of general mathematical methods, but the detailed analysis of
the specific systems is not carried very far. Mathematical physicists have to
some extent neglected the detailed study of specific systems; we believe
that this neglect is unfortunate, for there are many interesting unsolved
problems in specific systems, even in the purely Coulombic model of atomic
physics. For example, it has not been shown that H™ ™ has no bound states
even though the analogous classical system of one positive and three nega-
tive charges has the property that its energy is lowered by moving a suitable
electron to infinity. And it is not known rigorously that the energy needed
to remove the first electron from an atom is less than the energy needed to
remove the second, even though this is “physically obvious.” We hope
that by collecting the general mathematical methods in Volumes II, III,
and IV, we have made the analysis of specific systems easier and more
attractive.

Nonrelativistic quantum mechanics is often viewed by physicists as an
area whose qualitative structure, especially on the level treated here, is
completely known. It is for this reason that a substantial fraction of the
theoretical physics community would regard these volumes as exercises
in pure mathematics. On the contrary, it seems to us that much of this
material is an integral part of modern quantum theory. To take a specific
example, consider the question of showing the absence of the singular
continuous spectrum and the question of proving asymptotic completeness
for the purely Coulombic model of atomic physics. The former problem
was solved affirmatively by Balslev and Combes in 1970, the latter is still
open. Many physicists would approach these questions with Goldberger’s
method: “The proof is by the method of reductio ad absurdum. Suppose
asymptotic completeness is false. Why that’s absurd! Q.E.D.” Put more
precisely: If asymptotic completeness is not valid, would we not have dis-
covered this by observing some bizarre phenomena in atomic or molecular
physics? Since physics is primarily an experimental science, this attitude
should not be dismissed out of hand and, in fact, we agree that it is extremely
unlikely that asymptotic completeness fails in atomic systems. But, in our
opinion, theoretical physics should be a science and not an art and, further-
more, one does not fully understand a physical fact until one can derive
it from first principles. Moreover, the solution of such mathematical prob-
lems can introduce new methods of calculational interest (for example,
Faddeev’s treatment of completeness in three-body systems and the applica-
tion of his ideas in nuclear physics) and can provide important elements of



Introduction xi

clarity (for example, the physical artificiality of *“adiabatic switching™
in nonrigorous scattering theory and the clarifying work of Cook, Jauch,
and Kato).

The general remarks about notes and problems in earlier introductions
are applicable here with one addition: the bulk of the material presented
in this volume is from advanced research literature, so many of the “prob-
lems” are quite substantial. Some of the starred problems summarize the
contents of research papers!
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Xll: Perturbation of Point Spectra

In the thirties, under the demoralizing influence of quantum-theoretic perturbation theory, the
mathematics required of a theoretical physicist was reduced to a rudimentary knowledge of the
Latin and Greek alphabets. Res Jost

In this chapter we shall examine the following general situation: An opera-
tor H, has an eigenvalue E,, which we usually assume is in the discrete
spectrum. Suppose that H, is perturbed a little; that is, consider Hy + gV
where V is some other operator and |f]| is small. What eigenvalues of
H, + BV lie near E, and how are they related to V? What are their proper-
ties as functions of B? Such a situation is familiar in quantum mechanics
where there are formal series for the perturbed eigenvalues. These
Rayleigh—-Schrodinger series are not special to quantum-mechanical opera-
tors but exist for many perturbations of the form H, + fV. The heart of this
chapter is the second section where we shall discuss the beautiful Kato-
Rellich theory of regular perturbations; this theory gives simple criteria
under which one can prove that these formal series have a nonzero radius of
convergence. We then discuss what the perturbation series means in cases
where it is divergent or not directly related to eigenvalues.

X111 Finite-dimensional perturbation theory

We first discuss finite-dimensional matrices. Not only will this allow us to
present explicit formulas in the simplest case, but we shall eventually treat

1



2 Xl: PERTURBATION OF POINT SPECTRA

degenerate perturbation theory by reducing it to an essentially finite-
dimensional problem. Furthermore, an important difficulty already occurs
in the finite-dimensional case, namely proving analyticity in § when there is
a degenerate eigenvalue. Recall that E, is called a degenerate eigenvalue
when the characteristic equation for Hy, det(H, — 4) = 0, has a multiple
root at A= E;. In an appendix to this section we review the theory of
matrices with degenerate eigenvalues and, in particular, we discuss the
Jordan normal form.
First consider the elementary example

LB
g —1

By our definition of operator-valued analytic function in Section VIL.3, T(f) is
a matrix-valued analytic function. To find its eigenvalues, we need only solve
det(T(B) — 4) = O (the secular or characteristic equation). Thus

As(B)= 2 /BT + 1

are the eigenvalues. This problem has several characteristic features:

T(6) = [

(i) Even though T(B) is entire in S, the eigenvalues are not entire but
have singularities as functions of f3.

(i) The singularities are not on the real § axis where T() is self-adjoint
but occur at nonreal §, namely at § = +i. Thus, while there are no singulari-
ties at “ physical” values, the perturbation series, i.c., the Taylor series for
A+(B) at B=0, have a finite radius of convergence due to complex
singularities.

(i) “Level crossing” takes place at the singular values of f; that is, at
B = *i there are fewer distinct eigenvalues, namely one, than at other
points, where there are two.

(iv) At the singular values of f the matrix T(f) is not diagonalizable.

Explicitly
ofif- B ] -

so the matrix of T(i) in the basis <2, 2i), {1, —i), is

0 1
0 0
While this “Jordan anomaly” is typical, we leave a discussion of it to the

Notes; see also Problem 23.
(v) The analytic continuation of an eigenvalue is an eigenvalue.



XIil.1 Finite-dimensional perturbation theory 3

For the remainder of this section, we shall suppose that T(f) is a matrix-
valued analytic function in a connected region R of the complex plane.
Notice that we do not require T(f) to be linear in B. Later, we shall be able
to reduce the infinite-dimensional, linear, finitely degenerate perturbation
problem to a finite-dimensional problem, but one that is no longer linear in
p. Thus, greater generality at this point will be crucial.

To find the eigenvalues of T(f) we must solve a secular equation

det(T(B) — A) = (= 1)[4" + a,(B)A""" + -+ + a,(f)] = 0

The basic theorem about such functions is:

Theorem X111 Let F(8, 1) = A"+ a,(B)A"~* + -+ + a,(B) be a polyno-
mial of degree n in A whose leading coefficient is one and whose coefficients
are all analytic functions of . Suppose that 4 = 4, is a simple root of
F(Bo, 4). Then for 8 near fi,, there is exactly one root A(f8) of F(f, 4) near 4,
and A(p) is analytic in f near = f3,.

Proof This is a special case of the implicit function theorem. Since F(f, 4) is
analytic near f, and 4,, we can write F(B, 1) = Y n_o (A — Ao)™/(B) with
fo(Bo) = F(Bo, 40) = 0, and f(Bo) = (aF/a'l)(ﬂo , Ag) # O since 4, is a simple
root. Thus to find solutions of F(f, 4) = 0, we need only solve the equivalent
equation

Zl o) ( (1)

Because f;(B,) # 0, all the coefficients f,(8)/f,(B) are analytic near f = f,.
We try to solve this last equation with a solution of the form A(f) = 4, +
Y, %(B — Bo). The o, can be computed by recursive substitution into (1);
for example,

S A7)

and
. [fo(B)J _ g2 1alBo)
2T 724G lppeSi(Bo)

It is not very hard to prove that the «'s determined recursively yield a power
series with a nonzero radius of convergence (Problem 1a). Uniqueness is also
fairly easy (Problem 1b). §

Corollary Let T(B) be a matrix-valued analytic function near f, and
suppose 4, is a simple eigenvalue of T(f,). Then:

(a) For B near f3,, T(B) has exactly one eigenvalue, Ao(f), near Z,.



4 Xli: PERTURBATION OF POINT SPECTRA

(b) Ao(p) is a simple eigenvalue if B is near S, .
(c) Ao(B) is analytic near § = .

For multiple roots, a more complicated but still straightforward analysis
is necessary. We do not prove the following basic theorem for this case
(proofs can be found in the references in the Notes).

Theorem XIl2 Let F(B,A)=2A"+a,(B)A" ' + -+ + a,(B) be an nth
degree polynomial in A whose leading coefficient is one and whose
coefficients are all analytic functions of B. Suppose A = 4, is a root of multi-
plicity m of F(B,, A). Then for § near 8, there are exactly m roots (counting
multiplicity) of F(B, A) near A, and these roots are the branches of one or
more multivalued analytic functions with at worst algebraic branch points at
B = B, . Explicitly, there are positive integers py, ..., p, with Y ., p; = mand
multivalued analytic functions 4,, ..., 4, (not necessarily distinct) with con-
vergent Puiseux series (Taylor series in (8 — Bo)'/?)

M) = o+ Y (B — fo”

so that the m roots near A, are given by the p, values of 4,, the p, values of
A, etc.

Corollary If T(B) is a matrix-valued analytic function near 8, and if A, is
an eigenvalue of T(f,) of algebraic multiplicity m, then for § near f,, T(B)
has exactly m eigenvalues (counting multiplicity) near A, . These eigenvalues
are all the branches of one or more multivalued functions analytic near g,
with at worst algebraic singularities at S, .

If A and B are self-adjoint, the perturbed eigenvalues of A + fB are analy-
tic at f =0 even if A has degenerate eigenvalues. That the branch points
allowed by the last theorem do not occur in this case is a theorem of Rellich.
This theorem and its sister theorem on the analyticity of the eigenvectors in
this case are the really deep results of finite-dimensional perturbation theory.
The example at the beginning of this section shows that branch points can
occur for nonreal § even in the “self-adjoint case,” T(B)* = T(f).

Theorem XI1.3 (Rellich’s theorem) Suppose that T(B) is a matrix-
valued analytic function in a region R containing a section of the real axis,
and that T(p) is self-adjoint for B on the real axis. Let i, be an eigenvalue of
T(B,) of multiplicity m. If B, is real, there are p < m distinct functions 4, (),
..+» Ap(P), single-valued and analytic in a neighborhood of f,, which are all
the eigenvalues.



