OREILLY"

Test-Driven
Development
with Pyth

Pythonilit 3R Zh FF %& (#/E0kR)

% b R7 kRt Harry JW. Percival &

Pythonili{ IR Zh FF & (a0

Test-Driven Development with Python

Harry J W, Percival &

\e ®
Beijing - Cambridge « Farnham « Koln « Sebastopol * Tokyo OREILLY

O'Reilly Media, Inc. #% 1% 2R B K 2 H R 3t HE AR

MR REAFHARE

B B4R B (CIP) #i#E

Python il i 3K 3h ¥ %& . 3& 3¢/ (3&) P4 FL /R
(Percival, HJ.W.) 3. — 2 EIA. —RI L. ZREI R H IR
#t,20159

45 A4 3 : Test — Driven Development with Python

ISBN 978 -7 5641 - 5915- 3

1.0pP- 1.0 M.OHM4TE-EFE
=¥ V. OTP311.56

[A B B E CIP BUEAZ S (201556 165738 5

VLI AR ZEVEAL A R BE
B .10- 2015- 239 5

© 2014 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2015. Authorized reprint of the original English edition, 2015 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form

3 LR d O'Reilly Media, Inc.tH % 2014,

F PR AR K R R 2015, bR PR IR EG R Ao 45 B 17 3] s AU 4 B AR BT R
—— O'Reilly Media, Inc.#9# 7T,

AR AT s KA 4 @ T o A 4 AT 5 Fo o R R A MERTH X EH .

Python MK 3hIF & GEZEN RO

HWRREAT: AREE Ko HRAE

Mo hE: REEDUMERE 2SS HRSE 210096
WO A TLER

& Hit: http://www.seupress.com
HLF-HE {4 . press@seupress.com

B il HM T aREE S = BRI A PRAF
A TRTEEKXBOEEK 16 A
g, 3125

8. 612 FF

W 20154F 9 A4 1 i

R 201549 A S8 1 YENRI

2. ISBN 978 - 7- 5641 - 59153
fir: 89.00 7T

a8 F 4B H

Akt P A N R AR R S AR R . ARG (E D)« 025- 83791830

Preface

This book is my attempt to share with the world the journey I've taken from “hacking”
to “software engineering”, It’s mainly about testing, but there’s a lot more to it, as you’ll
soon see.

['want to thank you for reading it.

If you bought a copy, then I'm very grateful. If you're reading the free online version,
then I'm still grateful that you've decided it's worth spending some of your time on. Who
knows, perhaps once you get to the end, you'll decide it's good enough to buy a real copy
for yourself or for a friend.

If you have any comments, questions, or suggestions, I'd love to hear from you. You can
reach me directly via obeythetestinggoat@gmail.com, or on Twitter @hjwp (https://
www.twitter.com/hjwp). You can also check out the website and my blog (http://
www.obeythetestinggoat.com), and there’s a mailing list (https://groups.google.com/
forum/#!forum/obey-the-testing-goat-book).

I hope you'll enjoy reading this book as much as I enjoyed writing it.

Why I Wrote a Book About Test-Driven Development

“Who are you, why are you writing this book, and why should I read it?” 1 hear you ask.

I'm still quite early on in my programming career. They say that in any discipline, you
go from apprentice, to journeyman, and eventually, sometimes, on to master. I'd say
that ’'m—at best—a journeyman programmer. But I was lucky enough, early on in my
career, to fall in with a bunch of TDD fanatics, and it made such a big impact on my
programming that I'm burning to share it with everyone. You might say I have the
enthusiasm of a recent convert, and the learning experience is still a recent memory for
me, so I hope I can still empathise with beginners.

When I first learned Python (from Mark Pilgrim’s excellent Dive Info Python), I came
across the concept of TDD, and thought “Yes. I can definitely see the sense in that”

xvii

Perhaps you had a similar reaction when you first heard about TDD? It sounds like a
really sensible approach, a really good habit to get into—like regularly flossing your
teeth or something.

Then came my first big project, and you can guess what happened—there was a client,
there were deadlines, there was lots to do, and any good intentions about TDD went
straight out of the window.

And, actually, it was fine. I was fine.
At first.

At first | knew I didn’t really need TDD because it was a small website, and I could easily
test whether things worked by just manually checking it out. Click this link here, choose
that drop-down item there, and this should happen. Easy. This whole writing tests thing
sounded like it would have taken ages, and besides, I fancied myself, from the full height
of my three weeks of adult coding experience, as being a pretty good programmer. |
could handle it. Easy.

Then came the fearful goddess Complexity. She soon showed me the limits of my
experience.

The project grew. Parts of the system started to depend on other parts. I did my best to
follow good principles like DRY (Don’t Repeat Yourself), but that just led to some pretty
dangerous territory. Soon I was playing with multiple inheritance. Class hierarchies 8
levels deep. eval statements.

I became scared of making changes to my code. I was no longer sure what depended on
what, and what might happen if I changed this code over here, oh gosh, I think that bit
over there inherits from it—no, it doesn’t, i’s overriden. Oh, but it depends on that class
variable. Right, well, as long as I override the override it should be fine. I'll just check
—but checking was getting much harder. There were lots of sections to the site now,
and clicking through them all manually was starting to get impractical. Better to leave
well enough alone, forget refactoring, just make do.

Soon I had a hideous, ugly mess of code. New development became painful.

Not too long after this, I was lucky enough to get a job with a company called Resolver
Systems (now PythonAnywhere (https://www. pythonanywhere.com)), where Extreme
Programming (XP) was the norm. They introduced me to rigorous TDD.

Although my previous experience had certainly opened my mind to the possible benefits
of automated testing, I still dragged my feet at every stage. “I mean, testing in general
might be a good idea, but really? All these tests? Some of them seem like a total waste
of time ... What? Functional tests as well as unit tests? Come on, that’s overdoing it!
And this TDD test/minimal-code-change/test cycle? This is just silly! We don’t need all

xviii | Preface

these baby steps! Come on, we can see what the right answer s, why don’t we just skip
to the end?”

Believe me, I second-guessed every rule, I suggested every shortcut, I demanded justi-
fications for every seemingly pointless aspect of TDD, and I came out seeing the wisdom
of itall. I've lost count of the number of times I've thought “Thanks, tests”, as a functional
test uncovers a regression we would never have predicted, or a unit test saves me from
making a really silly logic error. Psychologically, it's made development a much less
stressful process. It produces code that’s a pleasure to work with.

So, let me tell you all about it!

Aims of This Book

My main aim is to impart a methodology—a way of doing web development, which I
think makes for better web apps and happier developers. There’s not much point in a
book that just covers material you could find by googling, so this book isn’t a guide to
Python syntax, or a tutorial on web development per se. Instead, I hope to teach you
how to use TDD to get more reliably to our shared, holy goal: clean code that works.

With that said: T will constantly refer to a real practical example, by building a web app
from scratch using tools like Django, Selenium, jQuery, and Mock. I'm not assuming
any prior knowledge of any of these, so you should come out of the other end of this
book with a decent introduction to those tools, as well as the discipline of TDD.

In Extreme Programming we always pair-program, so I've imagined writing this book
as if Iwas pairing with my previous self, having to explain how the tools work and answer
questions about why we code in this particular way. So, if I ever take a bit of a patronising
tone, it's because I'm not all that smart, and I have to be very patient with myself. And
if1ever sound defensive, it's because I'm the kind of annoying person that systematically
disagrees with whatever anyone else says, so sometimes it takes a lot of justifying to
convince myself of anything.

Outline

I've split this book into three parts.

Part I (Chapters 1-6): The basics
Dives straight into building a simple web app using TDD. We start by writing a
functional test (with Selenium), then we go through the basics of Django—models,
views, templates—with rigorous unit testing at every stage. I also introduce the
Testing Goat.

Preface | xix

Part II (Chapters 7-14): Web development essentials
Covers some of the trickier but unavoidable aspects of web development, and shows
how testing can help us with them: static files, deployment to production, form data
validation, database migrations, and the dreaded JavaScript.

Part III (Chapters 15-20): More advanced topics
Mocking, integrating a third-party authentication system, Ajax, test fixtures,
Outside-In TDD, and Continuous Integration (CI).

On to a little housekeeping...

Conventions Used in This Book

The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Occasionally I will use the symbol:

[...]

to signify that some of the content has been skipped, to shorten long bits of output, or
to skip down to a relevant bit.

This element signifies a tip or suggestion.

This element signifies a general note or aside.

xx | Preface

| This element indicates a warning or caution.

Using Code Examples

Code examples are available at https://github.com/hjwp/book-example/; you'll find
branches for each chapter there (eg, https://github.com/hjwp/book-example/tree/chap
ter_03). You'll also find some suggestions on ways of working with this repository at
the end of each chapter.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Test-Driven Development with Python by
Harry Percival (O'Reilly). Copyright 2014 Harry Percival, 978-1-449-36482-3”

Ifyou feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O'Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM

Preface | xxi

Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

Contacting O'Reilly

If you'd like to get in touch with my beloved publisher with any questions about this
book, contact details follow:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send email to bookquestions@oreilly.com.

You can find errata, examples, and additional information at http://bit.ly/test-driven-
python.

For more information about books, courses, conferences, and news, see O'Reilly’s web-
site at http://www.oreilly.com.

Facebook: http://facebook.com/oreilly
Twitter: http://twitter.com/oreillymedia

YouTube: http://www.youtube.com/oreillymedia

xxii | Preface

Prerequisites and Assumptions

Here’s an outline of what I'm assuming about you and what you already know, as well
as what software you’ll need ready and installed on your computer.

Python 3 and Programming

I've written the book with beginners in mind, but if you're new to programming, 'm
assuming that you've already learned the basics of Python. So if you haven't already, do
run through a Python beginner’s tutorial or get an introductory book like Dive Into
Python (http://www.diveintopython.net/) or Learn Python the Hard Way (http://learn
pythonthehardway.org/), or, just for fun, Invent Your Own Computer Games with
Python (http://inventwithpython.com/), all of which are excellent introductions.

If you're an experienced programmer but new to Python, you should get along just fine.
Python is joyously simple to understand.

I'm using Python 3 for this book. When I wrote it in 2013-14, Python 3 had been around
for several years, and the world was just about on the tipping point at which it was the
preferred choice. You should be able to follow this book on Mac, Windows, or Linux.
Detailed installation instructions for each OS follow.

This book was tested against Python 3.3 and Python 3.4. If you're on
3.2 for any reason, you may find minor differences, so you're best off
upgrading if you can.

I wouldn't recommend trying to use Python 2, as the differences are more substantial.
You'll still be able to carry across all the lessons you learn in this book if your next project
happens to be in Python 2. But spending time figuring out whether the reason your
program output looks different from mine is because of Python 2, or because you made
an actual mistake, won’t be time spent productively.

Xxiii

If you are thinking of using PythonAnywhere (http://www.pythonanywhere.com) (the
Paa$ startup I work for), rather than a locally installed Python, you should go and take
a quick look at Appendix A before you get started.

In any case, I expect you to have access to Python, to know how to launch it from a
command line (usually with the command python3), and to know how to edit a Python
file and run it. Again, have a look at the three books I recommended previously if you're
in any doubt.

If you already have Python 2 installed, and youre worried that in-
stalling Python 3 will break it in some way, don’t! Python 3 and 2 can
coexist peacefully on the same system, and they each store their
packages in totally different locations. You just need to make sure that
you have one command to launch Python 3 (python3), and another
to launch Python 2 (usually, just python). Similarly, when we install
pip for Python 3, we just make sure that its command (usually pip3)
is identifiably different from the Python 2 pip.

How HTML Works

I’'m also assuming you have a basic grasp of how the web works—what HTML is, what
a POST request is, etc. If you're not sure about those, you'll need to find a basic HTML
tutorial—there are a few at http://www.webplatform.org/. If you can figure out how to
create an HTML page on your PC and look at it in your browser, and understand what
a form is and how it might work, then you’re probably OK.

JavaScript

There’s a little bit of JavaScript in the second half of the book. If you don’t know Java-
Script, don’t worry about it until then, and if you find yourself a little confused, I'll
recommend a couple of guides at that point.

Required Software Installations
Aside from Python, you'll need:

The Firefox web browser
A quick Google search will get you an installer for whichever platform you're on.
Selenium can actually drive any of the major browsers, but Firefox is the easiest to
use as an example because it’s reliably cross-platform and, as a bonus, is less sold
out to corporate interests.

The Git version control system
This is available for any platform, at http://git-scm.com/.

xxiv | Prerequisites and Assumptions

The pip Python package management tool
This comes bundled with Python 3.4 (it didn’t always used to, this is a big hooray).
To make sure we're using the Python3 version of pip, I'll always use pip3 as the
executable in my command-line examples. Depending on your platform, it may be

pip-3.4 or pip-3.3. Have a look at the detailed notes for each operating system
for more info.

Windows Notes

Windows users can sometimes feel a little neglected, since OS X and Linux make it easy
to forget there’s a world outside the Unix paradigm. Backslashes as directory separators?

Drive letters? What? Still, it is absolutely possible to follow along with this book on
Windows. Here are a few tips:

1. When you install Git for Windows, make sure you choose “Run Git and included
Unix tools from the Windows command prompt”. You'll then get access to a program
called “Git Bash” Use this as your main command prompt and you’ll get all the

useful GNU command-line tools like s, touch, and grep, plus forward-slash di-
rectory separators.

2. When you install Python 3, make sure you tick the option that says “add python.exe
to Path” as in Figure P-1, to make sure you can run Python from the command line.

Customize Python 3.4.0

Select the way you want features to be installed,
Click on the icons in the tree below to change the
way features wil be installed,

Register Extensians
TelfTk

Documentation

Utility Scripts

pip

Test suite

i Add python.exe o Bath il
i ‘"‘*‘1‘ &3 Will be installed on local hard drive
Prepend C:\IJ‘ @38 Entire feature will be installed on local harc

variable. This -
command pri 3 Entire feature will be unavailable
python | 1‘
for This feature requires OKB on your hard drive.
windows "
[Disk gsage] [Advanced] f < Back]LNext | [Cancel]

Figure P-1. Add python to the system path from the installer

Prerequisites and Assumptions | xxv

3. On Windows, Python 3s executable is called python. exe, which is exactly the same
as Python 2, To avoid any confusion, create a symlink in the Git Bash binaries folder,
like this:

1n -s /c/Python34/python.exe /bin/python3.exe

You may need to right-click Git-Bash and choose “Run as an administrator” for
that command to work. Note also that the symlink will only work in Git Bash, not
in the regular DOS command prompt.

4. Python 3.4 comes with pip, the package management tool. You can check it’s in-
stalled by doing a which pip3 from a command line, and it should show you /c/
Python34/Scripts/pip3.

If, for whatever reason, you're stuck with Python 3.3 and you don’t have pip3, check
http://www.pip-installer.org/ for installation instructions. At the time of writing,
this involved downloading a file and then executing it with python3 get-pip.py.
Make sure you use python3 when you run the setup script.

The test for all this is that you should be able to go to a Git-

Bash command prompt and just run python3 or pip3 from any
folder.

MacOS Notes

MacOS is a bit more sane than Windows, although getting pip3 installed was still fairly

challenging up until recently. With the arrival of 3.4, things are now quite straightfor-
ward:

« Python 3.4 should install without a fuss from its downloadable installer (http://
www.python.org). It will automatically install pip, too.

« Git’s installer should also “just work”.

Similarly to Windows, the test for all this is that you should be able to open a terminal
and just run git, python3, or pip3 from anywhere. If you run into any trouble, the search

terms “system path” and “command not found” should provide good troubleshooting
resources.

xxvi | Prerequisites and Assumptions

You might also want to check out Homebrew (http://brew.sh//).
It used to be the only reliable way of installing lots of Unixy tools
(including Python 3) on a Mac. Although the Python installer is
now fine, you may find it useful in future. It does require you to
download all 1.1 GB of Xcode, but that also gives you a C com-
piler, which is a useful side effect.

Git’s Default Editor, and Other Basic Git Config

I'll provide step-by-step instructions for Git, but it may be a good idea to get a bit of
configuration done now. For example, when you do your first commit, by default vi will
pop up, at which point you may have no idea what to do with it. Well, much as vi has
two modes, you then have two choices. One is to learn some minimal vi commands
(press the i key to go into insert mode, type your text, press <Esc> to go back to normal
mode, then write the file and quit with :wq<Enter>). You'll then have joined the great
fraternity of people who know this ancient, revered text editor.

Or you can point-blank refuse to be involved in such a ridiculous throwback to the
1970s, and configure Git to use an editor of your choice. Quit vi using <Esc> followed
by :q!, then change your Git default editor. See the Git documentation on basic Git
configuration (http://git-scm.com/book/en/Customizing-Git-Git-Configuration).

Required Python Packages

Once you have pip installed, it’s trivial to install new Python packages. We'll install some
as we go, but there are a couple we’ll need right from the beginning, so you should install
them right away:

« Django 1.7, sudo pip3 install django==1.7 (omit the sudo on Windows). This
is our web framework. You should make sure you have version 1.7 installed and
that you can access the django-admin.py executable from a command line. The
Django documentation (https://docs.djangoproject.com/en/1.7/intro/install/) has
some installation instructions if you need help.

o Selenium,sudo pip3 install --upgrade selenium(omitthe sudo on Windows),
a browser automation tool that we’ll use to drive what are called functional tests.
Make sure you have the absolute latest version installed. Selenium is engaged in a
permanent arms race with the major browsers, trying to keep up with the latest
features. If you ever find Selenium misbehaving for some reason, the answer is often
that it's a new version of Firefox and you need to upgrade to the latest Selenium ...

Prerequisites and Assumptions | xxvii

Unless you're absolutely sure you know what you're doing, don’t use
a virtualenv. We'll start using one later in the book, in Chapter 8.

A Note on IDEs

If you've come from the world of Java or .NET, you may be keen to use an IDE for your
Python coding. They have all sorts of useful tools, including VCS integration, and there
are some excellent ones out there for Python. T used one myself when I was starting out,
and I found it very useful for my first couple of projects.

Can I suggest (and it’s only a suggestion) that you don’t use an IDE, at least for the
duration of this tutorial? IDEs are much less necessary in the Python world, and I've
written this whole book with the assumption that you're just using a basic text editor
and a command line. Sometimes, that’s all you have—when you’re working on a server
for example—so it’s always worth learning how to use the basic tools first and under-
standing how they work. It'll be something you always have, even if you decide to go
back to your IDE and all its helpful tools, after you've finished this book.

Did these instructions not work for you? Or have you got better ones?
Get in touch: obeythetestinggoat@gmail.com!

xxviii | Prerequisites and Assumptions

Companion Video

I've recorded a 10-part video series to accompany this book (http://oreil.ly/1svTFgB). It
covers the content of Chapters 1-6. If you find you learn well from video-based material,
then I encourage you to check it out. Over and above what’s in the book, it should give
you a feel for what the “flow” of TDD is like, flicking between tests and code, explaining
the thought process as we go.

Plus 'm wearing a delightful yellow T-shirt:

XXix

Acknowledgments

Lots of people to thank, without whom this book would never have happened, and/or
would have been even worse than it is.

Thanks first to “Greg” at SOTHER_PUBLISHER, who was the first person to encourage
me to believe it really could be done. Even though your employers turned out to have
overly regressive views on copyright, I'm forever grateful that you believed in me.

Thanks to Michael Foord, another ex-employee of Resolver Systems, for providing the
original inspiration by writing a book himself, and thanks for his ongoing support for
the project. Thanks also to my boss Giles Thomas, for foolishly allowing another one
of his employees to write a book (although I believe he’s now changed the standard
employment contract to say “no books”). Thanks also for your ongoing wisdom and for
setting me off on the testing path.

Thanks to my other colleagues, Glenn Jones and Hansel Dunlop, for being invaluable
sounding boards, and your patience with my one-track record conversation over the
last year.

Thanks to my wife Clementine, and to both my families, without whose support and
patience I would never have made it. I apologise for all the time spent with nose in
computer on what should have been memorable family occasions. I had no idea when
I set out what the book would do to my life (“write it in my spare time you say? That
sounds reasonable...”). I couldn’t have done it without you.

Thanks to my tech reviewers, Jonathan Hartley, Nicholas Tollervey, and Emily Bache,
for your encouragements and invaluable feedback. Especially Emily, who actually con-
scientiously read every single chapter. Partial credit to Nick and Jon, but that should
still be read as eternal gratitude. Having y’all around made the whole thing less of a
lonely endeavour. Without all of you the book would have been little more than the
nonsensical ramblings of an idiot.

Thanks to everyone else who's given up some of their time to give some feedback on the
book, out of nothing more than the goodness of their heart: Gary Bernhardt, Mark

XXXi

