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Preface

The Differential Geometry in the title of this book is the study of the geometry
of curves and surfaces in three-dimensional space using calculus techniques.
This topic contains some of the most beautiful results in Mathematics, and
yet most of them can be understood without extensive background knowledge.
Thus, for virtually all of this book, the only pre-requisites are a good working
knowledge of Calculus (including partial differentiation), Vectors and Linear
Algebra (including matrices and determinants).

Many of the results about curves and surfaces that we shall discuss are pro-
totypes of more general results that apply in higher-dimensional situations. For
example, the Gauss-Bonnet theorem, treated in Chapter 11, is the prototype of
a large number of results that relate ‘local’ and ‘global’ properties of geometric
objects. The study of such relationships formed one of the major themes of
20th century Mathematics.

We want to emphasise, however, that the methods used in this book are
not necessarily those which generalise to higher-dimensional situations. (For
readers in the know, there is, for example, no mention of ‘connections’ in the
remainder of this book.) Rather, we have tried at all times to use the simplest
approach that will yield the desired results. Not only does this keep the pre-
requisites to an absolute minimum, it also enables us to avoid some of the
conceptual difficulties often encountered in the study of Differential Geometry
in higher dimensions. We hope that this approach will make this beautiful
subject accessible to a wider audience.

It is a cliché, but true nevertheless, that Mathematics can be learned only
by doing it, and not just by reading about it. Accordingly, the book contains
over 200 exercises. Readers should attempt as many of these as their stamina
permits. Full solutions to all the exercises are given at the end of the book, but



vi Preface

these should be consulted only after the reader has obtained his or her own
solution, or in case of desperation. We have tried to minimise the number of
instances of the latter by including hints to many of the less routine exercises.

Preface to the Second Edition

Few books get smaller when their second edition appears, and this is not one of
those few. The largest addition is a new chapter devoted to hyperbolic (or non-
Euclidean) geometry. Quite reasonably, most elementary treatments of this sub-
ject mimic Euclid’s axiomatic treatment of ordinary plane geometry. A much
quicker route to the main results is available, however, once the basics of the
differential geometry of surfaces have been established, and it seemed a pity
not to take advantage of it.

The other two most significant changes were suggested by commentators on
the first edition. One was to treat the tangent plane more geometrically - this
then allows one to define things like the first and second fundamental forms
and the Weingarten map as geometric objects (rather than just as matrices).
The second was to make use of parallel transport. I only partly agreed with
this suggestion as I wanted to preserve the elementary nature of the book,
but in this edition I have given a definition of parallel transport and related it
to geodesics and Gaussian curvature. (However, for the experts reading this,
I have stopped just short of introducing connections.)

There are many other smaller changes that are too numerous to list,
but perhaps I should mention new sections on map-colouring (as an appli-
cation of Gauss-Bonnet), and a self-contained treatment of spherical geome-
try. Apart from its intrinsic interest, spherical geometry provides the simplest
‘non-Euclidean’ geometry and it is in many respects analogous to its hyperbolic
cousin. I have also corrected a number of errors in the first edition that were
spotted either by me or by correspondents (mostly the latter).

For teachers thinking about using this book, I would suggest that there
are now three routes through it that can be travelled in a single semester,
terminating with one of chapters 11, 12 or 13, and taking in along the way the
necessary basic material from chapters 1-10. For example, the new section on
spherical geometry might be covered only if the final destination is hyperbolic
geometry.

As in the first edition, solutions to all the exercises are provided at the
end of the book. This feature was almost universally approved of by student
commentators, and almost as universally disapproved of by teachers! Being
one myself, I do understand the teachers’ point of view, and to address it
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I have devised a large number of new exercises that will be accessible online
to all users of the book, together with a solutions manual for teachers, at
wWww.springer.com.

I would like to thank all those who sent comments on the first edition, from
beginning students through to experts - you know who you are! Even if I did not
act on all your suggestions, I took them all seriously, and I hope that readers
of this second edition will agree with me that the changes that resulted make
the book more useful and more enjoyable (and not just longer).
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1

Curves in the plane and in space

In this chapter, we discuss two mathematical formulations of the intuitive
notion of a curve. The precise relation between them turns out to be quite
subtle, so we begin by giving some examples of curves of each type and prac-
tical ways of passing between them.

1.1 What is a curve?

If asked to give an example of a curve, you might give a straight line, say
y — 2z = 1 (even though this is not ‘curved’!), or a circle, say z2 + y2 = 1, or
perhaps a parabola, say y — 22 = 0.

/\L/

/

y—2z=1 y—z2=0 T2+y2=1

Andrew Pressley, Elementary Differential Geomeiry: Second Edition, 1
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9.1,
© Springer-Verlag London Limited 2010



2 1. Curves in the plane and in space

All of these curves are described by means of their Cartesian equation

flz,y)=c¢

where f is a function of z and y and c is a constant. From this point of view,
a curve is a set of points, namely

C={(z,y) eR? | f(z,y) =c}. (1.1)
These examples are all curves in the plane R?, but we can also consider curves
in R3 - for example, the z-axis in R? is the straight line given by

y=0, 2=0,

and more generally a curve in R® might be defined by a pair of equations

fl(z’y’z) =y, f2($)yaz) = C2.
Curves of this kind are called level curves, the idea being that the curve in
Eq. 1.1, for example, is the set of points (z, y) in the plane at which the quantity
f(z,y) reaches the ‘level’ c.

But there is another way to think about curves which turns out to be more
useful in many situations. For this, a curve is viewed as the path traced out by
a moving point. Thus, if «y(t) is the position of the point at time ¢, the curve
is described by a function < of a scalar parameter ¢ with vector values (in R?
for a plane curve, in R3 for a curve in space). We use this idea to give our
first formal definition of a curve in R™ (we shall be interested only in the cases
n = 2 or 3, but it is convenient to treat both cases simultaneously).

Definition 1.1.1

A parametrized curve in R™ is a map v : (a,3) — R”, for some o, with
—wo<a<f<oo.

The symbol (o, 8) denotes the open interval

(0,8)={teR | a<t<p}

A parametrized curve, whose image is contained in a level curve C, is called
a parametrization of (part of) C. The following examples illustrate how to pass
from level curves to parametrized curves and back again in practice.

Example 1.1.2

Let us find a parametrization 4(t) of the parabola y = z2. If ~(t) =
(71(t), ¥2(t)), the components v; and <2 of v must satisfy

Ya(t) =7 (t)? (1.2)
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for all values of ¢ in the interval (a, 5) where 4 is defined (yet to be decided),
and ideally every point on the parabola should be equal to (v:(t),7y2(t)) for
some value of t € (o, B). Of course, there is an obvious solution to Eq. 1.2: take
1(t) = t,%2(t) = t2. To get every point on the parabola we must allow ¢ to
take every real number value (since the z-coordinate of () is just ¢, and the
z-coordinate of a point on the parabola can be any real number), so we must
take (a, ) to be (—00,00). Thus, the desired parametrization is

v : (—o00,00) = R%,  ~(t) = (t,t?).

But this is not the only parametrization of the parabola. Another choice is
~(t) = (t3,18) (with (o, B) = (—00, 00)). Yet another is (2¢,4t2), and of course
there are (infinitely many) others. So the parametrization of a given level curve
is not unique.

Example 1.1.3

Now we try the circle 22 +y? = 1. It is tempting to take r = t as in the previous
example, so that y = /1 — t2 (we could have taken y = —/1 — t2). So we get
the parametrization

¥(t) = (t, V1 -t2).

But this is only a parametrization of the upper half of the circle because
V1 —t2 is always > 0. Similarly, if we had taken y = —V/1 — t2, we would only
have covered the lower half of the circle.

If we want a parametrization of the whole circle, we must try again. We
need functions «;(¢) and y2(t) such that

()2 +1(t)? =1 (1.3)

for all t € (a, B), and such that every point on the circle is equal to (71 (t), y2(t))
for some t € (a,B). There is an obvious solution to Eq. 1.3: v;(t) = cost
and 7;(t) = sint (since cos?t + sin®t = 1 for all values of t). We can take
(a,B) = (—o00,00), although this is overkill: any open interval (a, ) whose
length is greater than 27 will suffice.

The next example shows how to pass from parametrized curves to level
curves.



4 1. Curves in the plane and in space

Example 1.1.4
Take the parametrized curve (called an astroid)

~(t) = (cos®t,sint), teR.

Since cos?t + sin?t = 1 for all ¢, the coordinates z = cos®t, y = sin®¢t of the
point ~y(t) satisfy
B+ =1.

This level curve coincides with the image of the map v. See Exercise 1.1.5 for
a picture of the astroid.

In this book, we shall be studying parametrized curves (and later, surfaces)
using methods of calculus. Such curves and surfaces will be described almost
exclusively in terms of smooth functions: a function f : (o, ) — R is said to be
smooth if the derivative 4L exists for all n > 1 and all t € (c, B). If £(t) and
g(t) are smooth functions, it follows from standard results of calculus that the

sum f(t)+g(t), product f(t)g(t), quotient f(t)/g(t), and composite f(g(t)) are
smooth functions, where they are defined.

To differentiate a vector-valued function such as 4(t) (as in Definition 1.1.1),
we differentiate componentwise: if

() = (m(t),v2(t), - -y W (t)),

then
dy _(dn de  dwm) &y _(dn drn d’%) o
dt dt’dt’ " dt )’ dit? dt2’ dt2’ 7 di2 )’ ’

To save space, we often denote dv/dt by +(t), d?>v/dt® by 4(t), etc. We say
that ~ is smooth if the derivatives d"v/dt" exist for alln > 1 and all t € (a, B);
this is equivalent to requiring that each of the components v3,72,...,7n of ¥
is smooth.

From now on, all parametrized curves studied in this book
will be assumed to be smooth.

Definition 1.1.5

If « is a parametrized curve, its first derivative 4(t) is called the tangent vector
of 4 at the point ().
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To see the reason for this terminology, note that the vector

y(t +6t) — ¥(t)
ot

is parallel to the chord joining the points +(t) and «y(t + 6t) of the image C of ~y:

Yt + dt)

¥(¢)

As 6t tends to zero the length of the chord also tends to zero, but we expect
that the direction of the chord becomes parallel to that of the tangent to C at
~(t). But the direction of the chord is the same as that of the vector

(¢ + 6t) —¥(t)
ot ’

which tends to d-/dt as 6t tends to zero. Of course, this only determines a well-
defined direction tangent to the curve if dv/dt is non-zero. If that condition
holds, we define the tangent line to C at a point p of C to be the straight line
passing through p and parallel to the vector d~y/dt.

The following result is intuitively clear:

Proposition 1.1.6

If the tangent vector of a'parametrized curve is constant, the image of the curve
is (part of) a straight line.

Proof

If 4(t) = a for all ¢, where a is a constant vector, we have, integrating compo-
nentwise,

7(t)=/%dt=/adt=ta+b,
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where b is another constant vector. If a # 0, this is the parametric equation of
the straight line parallel to a and passing through the point b:

ta t)
b a
0
If a = 0, the image of « is a single point (namely, b). O

Before proceeding further with our study of curves, we should point out a
potential source of confusion in the discussion of parametrized curves. This is
regarding the question what is a ‘point’ of such a curve? The difficulty can be
seen in the following example.

Example 1.1.7

The limagon is the parametrized curve

~4(t) = ((1 + 2 cost) cost, (1 + 2cost)sint), teR

(see the diagram below). Note that 4 has a self-intersection at the origin in the
sense that «(t) = 0 for ¢t = 27/3 and for t = 47 /3. The tangent vector is

4(t) = (—sint — 2sin2t,cost + 2 cos 2t).
In particular,

Y(2r/3) = (V3/2,-3/2), 4(4/3) = (—V/3/2,-3/2).

So what is the tangent vector of this curve at the origin? Although 4(t) is well-
defined for all values of ¢, it takes different values at ¢t = 27/3 and ¢t = 4n/3,
both of which correspond to the point 0 on the curve.
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This example shows that we must be careful while talking about a ‘point’
of a parametrized curve -y: strictly speaking, this should be the same thing
as a value of the curve parameter t, and not the corresponding geometric
point (t) € R™. Thus, Definition 1.1.5 should more properly read “If v is
a parametrized curve, its first derivative ¥(t) is called the tangent vector of
~ at the parameter value t.” However, it seems to us that to insist on this
distinction takes away from the geometric viewpoint, and we shall sometimes
repeat the ‘error’ committed in the statement of Definition 1.1.5. This should
not lead to confusion if the preceding remarks are kept in mind.

EXERCISES

1.1.1 Is ~(t) = (t2,t%) a parametrization of the parabola y = z2?
1.1.2 Find parametrizations of the following level curves:
(i) y*-2?=1;
(i) & +L =1
1.1.3 Find the Cartesian equations of the following parametrized curves:
(i) ¥(t) = (cos?t,sin® t);
(ii) () = (e*,t?).
1.1.4 Calculate the tangent vectors of the curves in Exercise 1.1.3.

1.1.5 Sketch the astroid in Example 1.1.4. Calculate its tangent vector at
each point. At which points is the tangent vector zero?

1.1.6 Consider the ellipse
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