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Preface

The works of Jaak Peetre constitute the main body of this treatise. Important
contributors are also J.L. Lions and A.P. Calder6n, not to mention several
others. We, the present authors, have thus merely compiled and explained the
works of others (with the exception of a few minor contributions of our own).

Let us mention the origin of this treatise. A couple of years ago, J. Peetre
suggested to the second author, J. Lofstrom, writing a book on interpolation
theory and he most generously put at Lofstrom’s disposal an unfinished manu-
script, covering parts of Chapter 1—3 and 5 of this book. Subsequently, Lofstrom
prepared a first rough, but relatively complete manuscript of lecture notes. This
was then partly rewritten and thouroughly revised by the first author, J. Bergh,
who also prepared the notes and comment and most of the exercises.

Throughout the work, we have had the good fortune of enjoying Jaak Peetre’s
kind patronage and invaluable counsel. We want to express our deep gratitude
to him. Thanks are also due to our colleagues for their support and help. Finally,
we are sincerely grateful to Boel Engebrand, Lena Mattsson and Birgit Hoglund
for their expert typing of our manuscript.

This is the first attempt, as far as we know, to treat interpolation theory fairly
comprehensively in book form. Perhaps this fact could partly excuse the many
shortcomings, omissions and inconsistencies of which we may be guilty. We beg
for all information about such insufficiencies and for any constructive criticism.

Lund and Goteborg, January 1976

Joran Bergh Jorgen Lofstrom



Introduction

In recent years, there has emerged a new field of study in functional analysis:
the theory of interpolation spaces. Interpolation theory has been applied to other
branches of analysis (e.g. partial differential equations, numerical analysis,
approximation theory), but it has also attracted considerable interest in itself.
We intend to give an introduction to the theory, thereby covering the main
elementary results.

In Chapter 1, we present the classical interpolation theorems of Riesz-Thorin
and Marcinkiewicz with direct proofs, and also a few applications. The notation
and the basic concepts are introduced in Chapter 2, where we also discuss some
general results, e.g. the Aronszajn-Gagliardo theorem.

We treat two essentially different interpolation methods: the real method and
the complex method. These two methods are modelled on the proofs of the
Marcinkiewicz theorem and the Riesz-Thorin theorem respectively, as they are
given in Chapter 1. The real method is presented, following Peetre, in Chapter 3;
the complex method, following Calderdn, in Chapter 4.

Chapter 5—7 contain applications of the general methods expounded in
Chapter 3 and 4.

In Chapter 5, we consider interpolation of L,-spaces, including general
versions of the interpolation theorems of Riesz-Thorin, and of Marcinkiewicz,
as well as other results, for instance, the theorem of Stein-Weiss concerning the
interpolation of L -spaces with weights.

Chapter 6 contains the interpolation of Besov spaces and generalized Sobolev
spaces (defined by means of Bessel potentials). We use the definition of the Besov
spaces given by Peetre. We list the most important interpolation results for these
spaces, and present various inclusion theorems, a general version of Sobolev’s
embedding theorem and a trace theorem. We also touch upon the theory of semi-
groups of operators.

In Chapter 7 we discuss the close relation between interpolation theory and
approximation theory (in a wide sense). We give some applications to classical
approximation theory and theoretical numerical analysis.

We have emphasized the real method at the expense of a balance (with respect
to applicability) between the real and the complex method. A reason for this is
that the real interpolation theory, in contrast to the case of the complex theory,
has not been treated comprehensively in one work. As a consequence, whenever
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it is possible to use both the real and the complex method, we have preferred to
apply the real method.

In each chapter the penultimate section contains exercises. These are meant
to extend and complement the results of the previous sections. Occasionally,
we use the content of an exercise in the subsequent main text. We have tried to
give references for the exercises. Moreover, many important results and most of
the applications can be found only as exercises.

Concluding each chapter, we have a section with notes and comment. These
include historical sketches, various generalizations, related questiops and refer-
ences. However, we have not aimed at completeness: the historical references
are not necessarily the first ones; many papers worth mention have been left out.
By giving a few key references, i.e. those which are pertinent to the reader’s own
further study, we hope to compensate partly for this.

The potential reader we have had in mind is conversant with the elements
of real (several variables) and complex (one variable) analysis, of Fourier analysis,
and of functional analysis. Beyond an elementary level, we have tried to supply
proofs of the statements in the main text. Our general reference for elementary
results is Dunford-Schwartz [1].

We use some symbols with a special convention or meaning. For other notation,
see the Index of Symbols.

f(x)~g(x) “There are positive constants C, and C, such that C,g(x)<f(x) <
C,g(x) (fand g being non-negative functions).”
Read: f and g are equivalent.

T:A—»B  “T is a continuous mapping from 4 to B.”

AcB “A is continuously embedded in B.”
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Chapter 1

Some Classical Theorems

The classical results which provided the main impetus for the study of inter-
polation in se are the theorems of M. Riesz, with Thorin’s proof, and of
Marcinkiewicz. Thorin's proof of the Riesz-Thorin theorem contains the idea
behind the complex interpolation method. Analogously, the way of proving
the Marcinkiewicz theorem resembles the construction of the real interpolation
method. We give direct proofs of these theorems (Section 1.1 and Section 1.3),
and a few of their applications (Section 1.2 and Section 1.4). More recently,
interpolation methods have been used in approximation theory. In Section 1.5
we rewrite the classical Bernstein and Jackson inequalities to indicate the con-
nection with approximation theory.

The purpose of this chapter is to introduce the type of theorems which will
be proved later, and also to give a first hint of the techniques used in their proofs.
Note that, in this introductory chapter, we are not stating the results in the more
general form they will have in later chapters.

1.1. The Riesz-Thorin Theorem

Let (U, u) be a measure space, u always being a positive measure. We adopt the
usual convention that two functions are considered equal if they agree except on
a set of yu-measure zero. Then we denote by L (U,dp) (or simply L, (du), L(U) or
even L) the Lebesgue-space of (all equivalence classes of) scalar-valued py-meas-
urable functions f on U, such that

(1) 11, =ol fCPdp)*?

is finite. Here we have 1<p<0. In the limiting case, p= 0, L, consists of all
pu-measurable and bounded functions. Then we write

2 IS L. =supylf(X)] .

In this section and the next, scalars are supposed to be complex numbers.



2 1. Some Classical Theorems

Let T be a linear mapping from L,=L,(U,du) to L,=L,(V,dv). This means
that T(af+Bg)=aT(f)+BT(g). We shall write

T:L,—L,
if in addition T is bounded, i.e. if

M=Supf¢o" Tf”l.q/"f"L,

is finite. The number M is called the norm of the mapping T.
Now we have the following well-known theorem.

1.1.1. Theorem (The Riesz-Thorin interpolation theorem). Assume that p,#p;,
qo#4q, and that ‘

T:L,(U,du)—L,(V,dv)
with norm M, and that
T:L,(U,du)—L, (V,dv)
with norm M,. Then
T:L(U,dp)—LyV,dv)
with norm
3) MM} M
provided that 0<0<1 and

B R
@ 18,
14 Po

1 1-0

q9 4o

8 L2
Py’ q,

Note that (3) means that M is logarithmically convex, i.e. logM is convex.
Note also the geometrical meaning of (4). The points (1/p, 1/g) described by (4)

i
L (1,1

o

Fig. 1



1.1. The Riesz-Thorin Theorem 3

are the points on the line segment between (1/py,1/9,) and (1/p,, 1/q,). (Ob-
viously one should think of L, as a “function” of 1/p rather than of p.)

Later on we shall prove the Riesz-Thorin interpolation (or convexity) theo-
rem by means of abstract methods. Here we shall reproduce the elementary
proof which was given by Thorin.

Proof : Let us write

<h, 9> = [y h(y)g(y)dv

and 1/¢'=1-1/q. Then we have, by Holder's inequality,

[hlly,=sup{[<h, g>l: ligll.,. =1} -
and

M=sup{KTf, @I | fllL,=lgll.,=1}.

Since p<w,q'<ow we can assume that f and g are bounded with compact
supports.
For 0<Rez<1 we put

1 1—z =z 1 1—z z

P po P 4@ 4o 4,

and

P(2)=o(x, 2)=|f(X)P* f()/f(x)l, xeU,
Y2)=y(y, 2)=lgI*" " g(y)/lg(y)l,  yeV.

It follows that p(z)eL, and Y(z)eL, and hence that T¢(z)eL,, j=0,1. It
is also easy to see that ¢'(2)eL,,, l/l'(")EL and thus also that (T(p) (2)eL,,
(0<Rez<1). This implies the existence of

F(z2)={(To(2), ¥(z2)>), O<Rez<1.

Moreover it follows that F(z) is analytic on the open strip O0<Rez<1, and
bounded and continuous on the closed strip 0<Rez<1.
Next we note that

l@Gol,, =PI, =1 fIgE=1,
lo@+inl,, =I1F1PP 0., =112 =1,

and similarly

Ity = It + i), =1
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By the assumptions, we therefore have

GOl < TG, WD, <M,
(3) ; !

[FA+igl<ITo( +it)l,, 1A +i0l., <M, .

We also note that

pO)=f, YO)=g,
and thus

) F(0)=(Tf.9>.

Using now the three line theorem (a variant of the well-known Hadamard three
circle theorem), reproduced as Lemma 1.1.2 below, we get the conclusion

KTf, gl <My~°M7,
or equivalently
M<ML=*M?. [

1.1.2. Lemma (The three line theorem). Assume that F(z) is analytic on the open
strip 0<Rez<1 and bounded and continuous on the closed strip 0<Rez<1. If

[Finl<sM,, |FA+if)lsM,, -—w<t<w,

we then have
|F(@+it)) <M~ °M], —w<t<w.

Proof: Let ¢ be a positive and A an arbitrary real number. Put
F (z)=exp(ez? + Az) F(2) .

Then it follows that

F(z)»0 as Imz-+tow0,
and

|[Fli| <My, [|F(1+it) <M e t*.
By the Phragmén-Lindeldf principle we therefore obtain

|F (z)| < max(M,, M,e**7),

|F(0+it)| <exp(—e(0* —t?)) max (M ge %, M e ~ 04+
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This holds for any fixed 6 and t. Letting e—+0 we conclude that
|F(6+it)| <max(M,p~° M,p' %

where p=expl The right hand side is as small as possible when M p~%=M,p* ¢,
i.e. when p=M,/M,. With this choice of p we get

[FO+it)|<My=°M?. D

12. Applications of the Riesz-Thorin Theorem

In this section we shall give two rather simple applications of the Riesz-Thorin
interpolation theorem. We include them here in order to illustrate the réle of
interpolation theorems of which the Riesz-Thorin theorem is just one (albeit
important) example.

We shall consider the case U=V=R" and du=dv=dx (Lebesgue-measure).
We let T be the Fourier transform % defined by

(FNEO=1©)=]f(x)exp(—i{x, &D)dx,

where (x,&=x,&,+ - +x,¢,. Here x=(x,,...,x,) and &=(¢,,...,¢&,). Then
we have

IZ O <[1f(x)ldx

and by Parseval's formula

[1Z £ (©)2de =Qny [ | f(x)|*dx .
This means that

%¥:L,-»L_, normi,

#:L,—L,, norm (2m)"2.
Using the Riesz-Thorin theorem, we conclude that
(1) F:.L~L,

with

1-0 0
=———+—,

1 i 1-8
P D27y

=—+—q., 0<f<1.
w 2

Eliminating 6, we see that 1/p=1—1/q, i.e., g=p’, where 1<p<2. The norm
of the mapping (1) is bounded by (2n)"2=(2n)"?. We have proved the follow-
ing result.
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1.2.1. Theorem (The Hausdorff-Young inequality). If 1<p<2 we have

1 £ 1l, <O fly,. O

As a second application of the Riesz-Thorin theorem we consider the con-
volution operator

Tf(x)=[k(x—y) f(y)dy=k=* f(x)

where k is a given function in L,. By Minkowski’s inequality we have

ITSf e, < Ikl I f 1z,

and, by Holder's inequality,

IT <Nkl I e,
Thus

T:L,~L,,

T:L,—-L,,
and therefore

T:L,—~L,
where

1—6 0 1-6
___+_

1 1 0

-= R e

p 1 p q p =

Elimination of 0 yields 1/g=1/p—1/p’ and 1<p<p’. This gives the following

result.

1.2.2. Theorem (Young's inequality). If keL, and feL, where 1<p<p' then
kxfeL, for 1/q=1/p—1/p" and

Ik*fll <Nklg 0 fllz, . O

1.3. The Marcinkiewicz Theorem

Consider again the measure space (U, y). In this section the scalars may be real
or complex. If f is a scalar-valued pu-measurable function which is finite almost
everywhere, we introduce the distribution function m(a, f) defined by

m(a, f)=pu({x:|f(x)|>a}).
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Since we have assumed that p is positive, we have that m(c, f) is a real-valued
or extended real-vdlued function of o, defined on the positive real axis IR , =(0, o).
Clearly m(o, f) is non-increasing and continuous on the right. Moreover, we have

(1) Hf”l,,:(Pjg' a’m(o, f)da/o)'’? if 1<p<oo,
and
(2) I f1l,.=inf{a: m(g, f)=0}.

Using the distribution function m(g, f), we now introduce the weak L -spaces
denoted by L*. The space L}, 1<p< o, consists of all f such that

I £l =sup,om(o, f)'" < 0.

In the limiting case p=o we put L% =L_. Note that || f|,, is not a norm if
1<p< . In fact, it is clear that

(€) m(a, f +g)<m(a/2, f)+m(a/2,g) .

Using the inequality (a+b)'?<a'?+b''?, we conclude that

||f+g||1.;, s2(“f”1_;,‘*‘ “9“1_1,) .

This means that L} is a so called quasi-normed vector space. (In a normed space
we have the triangle inequality | f+g| <||f|l+gl, but in a quasi-normed
space we only have the quasi-triangle inequality || f+g| <k(||f| +]lg]|) for some
k>1) If p>1 one can, however, as will be seen later on, find a norm on Lf,‘ and,
with this norm, L} becomes a Banach space. One can show that LY is complete
but not a normable space. (See Section 1.6.)

The spaces L* are special cases of the more general Lorentz spaces L,,. In their
definition we use yet another concept. If f is a y-measurable function we denote
by f* its decreasing rearrangement

) f*t)=inf{a: m(o, f)<t}.

This is a non-negative and non-increasing function on (0, co) which is con-
tinuous on the right and has the property

(5) m(p, f*)=m(p, ), p=0.

(See Figure 2.) Thus f* is equimeasurable with . In fact, by (4) we have
S*(m(p, f))<p and thus m(p, f*)<m(p, f). Moreover, since f* is continuous on
the right, f*(m(p, f*))<p and hence m(p, f)<m(p, f*).

Note that at all points ¢ where f*(t) is continuous the relation o= f*(1) is
equivalent to t=m(a, f).



