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Preface to Second Edition

The field of quantum optics today is very different form the field that Dan Walls
and I surveyed in 1994 for the first Edition of this book. Some of the new fields
that have emerged over the years were hinted at in the earlier edition: quantum
information has at least some roots in the study of Bell’s Inequalities, while the fields
of ion trapping and quantum condensed gases have their roots in the old chapter on
light forces. However such is the growth of activity in each of these areas that I
have found it necessary to write four new chapters for this edition. In order to keep
the book to a reasonable size this has meant cutting some of the material from the
first edition. The old chapter on Intracavity Atomic Systems is largely gone with
parts distributed in the new chapter on Cavity QED and elsewhere. Likewise the old
chapter on Resonance Fluorescence has been redistributed across Chaps. 10 and 11
in this edition. No doubt more cutting could have been made but I have tried to keep
some continuity with the previous edition. In any case an emphasis on experimental
realisations has been retained in the new material. Preparing this edition was not as
much fun as the first. With Dan Walls untimely death in 1999, I have been denied
the consolations of a shared task and soldiered on alone (although I must admit to
hearing his voice from time to time as I cut and pasted). I can only hope that I have
not lost his vision for the book in my unchallenged role of sole author.

Brisbane, Australia, G.J. Milburn
October 2007.
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Chapter 1
Introduction

The first indication of the quantum nature of light came in 1900 when Planck dis-
covered he could account for the spectral distribution of thermal light by postulating
that the energy of a simple harmonic oscillator was quantized. Further evidence was
added by Einstein who showed in 1905 that the photoelectric effect could be ex-
plained by the hypothesis that the energy of a light beam was distributed in discrete
packets later known as photons.

Einstein also contributed to the understanding of the absorption and emission
of light from atoms with his development of a phenomenological theory in 1917.
This theory was later shown to be a natural consequence of the quantum theory of
electromagnetic radiation.

Despite this early connection with the quantum theory, physical optics developed
more or less independently of quantum theory. The vast majority of physical-optics
experiments can be adequately explained using classical theory of electromagnetism
based on Maxwell’s equations. An early attempt to find quantum effects in an op-
tical interference experiment by G.I. Taylor in 1909 gave a negative result. Tay-
lor’s experiment was an attempt to repeat Young’s famous two slit experiment with
one photon incident on the slits. The classical explanation based in the interfer-
ence of electric field amplitudes and the quantum explanation based on the inter-
ference of probability amplitudes both correctly explain the phenomenon in this
experiment. Interference experiments of Young’s type do not distinguish between
the predictions of the classical theory and the quantum theory. It is only in higher
order interference experiments, involving the interference of intensities, that differ-
ences between the predictions of classical and quantum theory appear. In such an
experiment the probability amplitudes to detect a photon from two different fields
interfere on a detector. Whereas classical theory treats the interference of intensi-
ties, in quantum theory the interference is still at the level of probability amplitudes.
This is one of the most important differences between the classical and the quantum
theory.

The first experiment in intensity interferometry was the famous experiment of
R. Hanbury Brown and R.Q. Twiss. This experiment studied the correlation in the
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photocurrent fluctuations fro two detectors. Later experiments were based on photon
counting, and the correlation between photon number was studied.

The Hanbury—Brown and Twiss experiment observed an enhancement in the two-
time correlation function of short time delays for a thermal light source, known as
photon bunching. This was a consequence of the large intensity fluctuations in the
thermal source. Such photon bunching phenomenon may be adequately explained
using a classical theory with a fluctuating electric field amplitude. For a perfectly
amplitude stabilized light field, such as an ideal laser operating well above thresh-
old, there is no photon bunching. A photon counting experiment where the number
of photons arriving in an interval of time T are counted, shows that there is still
randomness in the arrival time of the photons. The photon number distribution for
an ideal laser is Poissonian. For thermal light a super-Poissonian photocount distri-
bution results.

While the these results may be derived form a classical and quantum theory,
the quantum theory makes additional unique predictions. This was first elucidated
by R.J. Glauber in his quantum formulation of optical coherence theory in 1963.
Glauber was jointly awarded the 2005 Nobel Prize in physics for this work. One
such prediction is photon anti bunching, in which the initial slope of the two-time
photon correlation function is positive. This corresponds to an enhancement, on
average, of the temporal separation between photo counts at a detector, or photon
anti-bunching. The photo-count statistics may also be sub-Poissonian. A classical
theory of fluctuating field amplitudes would require negative probability in order
to give anti-bunching. In the quantum picture it is easy to visualize photon arrivals
more regular than Poissonian.

It was not until 1975 that H.J. Carmichel and D.F. Walls predicted that light
generated in resonance fluorescence fro a two-level atom would exhibit photon anti-
bunching that a physically accessible system exhibiting non-classical behaviour was
identified. Photon anti-bunching in this system was observed the following year by
H.J. Kimble, M. Dagenais and L. Mandel. This was the first non classical effect
observed in optics and ushered in a new era of quantum optics.

The experiments of Kimble et al. used an atomic beam and hence the photon
anti-bunching was convoluted with the atomic number fluctuations in the beam.
With the development of ion trap technology it is now possible to trap a single ion
for many minute and observe fluorescence. H. Walther and co workers in Munich
have studied resonance fluorescence from a single ion in a trap and observed both
photon bunching and anti-bunching.

In the 1960s improvements in photon counting techniques proceeded in tandem
with the development of new laser light sources. Light from incoherent (thermal)
and coherent (laser) sources could now be distinguished by their photon count-
ing statistics. The groups of F.T. Arecchi in Milan, L. Mandel in Rochester and
R. Pike in Malvern measured the photo count statistics of the laser. These exper-
iments showed that the photo-count statistics went from super-Poissonian below
threshold to Poissonian far above threshold. Concurrently the quantum theory of
the laser was being developed by H. Haken in Stuttgart, M.O. Scully and W. Lamb
in Yale and M. Lax and W.H. Louisell in New Jersey. In these theories both the
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atomic variables and the electromagnetic field were quantized. The results of these
calculations were that the laser functioned as an essentially classical device. In fact
H. Risken showed that it could be modeled as a van der Pol Oscillator.

In the late 80s the role of noise in the laser pumping process was shown to ob-
scure the quantum aspects of the laser. If the noise in the pump can be suppressed
the laser may exhibit sub-Poissonian statistics. In other words the intensity fluctu-
ations may be reduced below the shot noise level of normal lasers. Y. Yamamoto
first in Tokyo and then Stanford has pioneered experimental developments of semi-
conductor lasers with suppressed pump noise. More recently, Yamamoto and others
have pioneered the development of the single photon source. This is a source of
transform-limited pulsed light with one and only one photon per pulse: the ultimate
limit of an anti-bunched source. The average field amplitude of such a source is
zero while the intensity is definite. Such sources are highly non classical and have
applications in quantum communication and computation.

It took another nine years after the first observation of photon anti-bunching for
another prediction of the quantum theory of light to be observed — squeezing of
quantum fluctuations. The electric field of a nearly monochromatic plane wave may
be decomposed into two quadrature component amplitudes of an oscillatory sine
term and a cosine term. In a coherent state, the closest quantum counter-part to
a classical field, the fluctuations in the two quadrature amplitudes are equal and
saturate the lower bound in the Heisenberg uncertainty relation. The quantum fluc-
tuations in a coherent state are equal to the zero point fluctuations of the vacuum
and are randomly distributed in phase. In a squeezed state the fluctuations are phase
dependent. One quadrature phase amplitude may have reduced fluctuations com-
pared to the vacuum while, in consequence, the other quadrature phase amplitude
will have increased fluctuations, with the product of the uncertainties still saturating
the lower bound in the Heisenberg uncertainty relation.

The first observation of squeezed light was made by R.E. Slusher in 1985 at
AT&T Bell Laboratories in four wave mixing. Shortly after squeezing was demon-
strated using optical parametric oscillators, by H.J. Kimble and four wave mixing
in optical fibres by M.D. Levenson. Since then, greater and greater degrees of quan-
tum noise suppression have been demonstrated, currently more than 7dB, driven
by new applications in quantum communication protocols such as teleportation and
continuous variable quantum key distribution.

In the nonlinear process of parametric down conversion, a high frequency photon
is absorbed and two photons are simultaneously produced with lower frequencies.
The two photons produced are correlated in frequency, momentum and possibly
polarisation. This results in very strong intensity correlations in the down converted
beams that results in strongly suppressed intensity difference fluctuations as demon-
strated by E. Giacobino in Paris and P. Kumar in Evanston.

Early uses of such correlated twin beams included accurate absorption measure-
ments in which the sample was placed in one arm with the other beam providing
a reference. when the twin beams are detected and the photo currents are sub-
tracted, the presence of very weak absorption can be seen because of the small quan-
tum noise in the difference current. More recently the strong intensity correlations
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have been used to provide an accurate calibration of photon detector efficiency by
A. Migdall at NIST and also in so called quantum imaging in which an object paced
in one path changes the spatial pattern of intensity correlations between the two
twin beams.

The high degree of correlation between the down converted photons enables
some of the most stringent demonstrations of the violation of the Bell inequalities
in quantum physics. In 1999 P. Kwiat obtained a violation by more than 240 stan-
dard deviations using polarisation correlated photons produced by type II parametric
down conversion. The quadrature phase amplitudes in the twin beams generated in
down conversion carry quantum correlations of the Einstein-Podolsky-Rosen type.
This enabled the continuous variable version of quantum teleportation, proposed by
L. Vaidmann, to be demonstrated by H.J. Kimble in 1998. More recently P.K. Lam,
using the same quadrature phase correlations, demonstrated a continuous variable
quantum key distributions.

These last examples lie at the intersection of quantum optics with the new field
of quantum information. Quantum entanglement enables new communication and
computational tasks to be performed that are either difficult or impossible in a classi-
cal world. Quantum optics provides an ideal test bed for experimental investigations
in quantum information, and such investigations now form a large part of the exper-
imental agenda in the field.

Quantum optics first entered the business of quantum information processing
with the proposal of Cirac and Zoller in 1995 to use ion trap technology. Fol-
lowing pioneering work by Dehmelt and others using ion traps for high resolu-
tion spectroscopy, by the early 1990s it was possible to trap and cool a single ion
to almost the ground state of its vibrational motion. Cirac and Zoller proposed a
scheme, using multiple trapped ions, by which quantum information stored in the
internal electronic state of each ion could be processed using an external laser to
correlate the internal states of different ions using collective vibrational degrees of
freedom. Ion traps currently provide the most promising approach to quantum in-
formation processing with more than eight qubits having been entangled in the labs
of D. Wineland at NIST in Colorado and R. Blatt in Innsbruck.

Quantum computation requires the ability to strongly entangle independent de-
grees of freedom that are used to encode information, known as qubits. It was ini-
tially thought however that the very weak optical nonlinearities typically found in
quantum optics would not be powerful enough to implement such entangling opera-
tions. This changed in 2001 when E. Knill, R. Laflamme and G.J. Milburn, followed
shortly thereafter by T. Pittman and J. Franson, proposed a way to perform condi-
tional entangling operations using information encoded on single photons, and pho-
ton counting measurements. Early experimental demonstrations of simple quantum
gates soon followed.

At about the same time another measurement based protocol for quantum com-
puting was devised by R. Raussendorf and H. Breigel. Nielsen showed how this ap-
proach could be combined with the single photon methods introduced by Knill et al.,
to dramatically simplify the implementation of conditional gates. The power of this
approach was recently demonstrated by A. Zeilinger’s group in Vienna. Scaling up
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this approach to more and more qubits is a major activity of experimental quantum
optics.

These schemes provide a powerful incentive to develop a totally new kind of light
source: the single photon pulsed source. This is a pulsed light source that produces
one and only one photon per pulse. Such sources are in development in many labo-
ratories around the world. A variety of approaches are being pursued. Sources based
on excitons in semiconductor quantum dots are being developed by A. Imamoglu
in Zurich, A. Shields in Toshiba Cambridge, and Y. Yamamoto and J. Vukovic in
Stanford. NV centres in diamond nanocrystal are under development by S. Prawer
in Melbourne. An interesting approach based on down conversion in optical fibers
is being studied by A. Migdall in NIST. Sources based on single atoms in optical
cavities have been demonstrated by H. Walther in Munich and P. Grangier in Paris.
Once routinely available, single photon sources will enable a new generation of ex-
periments in single photon quantum optics.

Beginning in the early 1980s a number of pioneers including G. Ashkin, C. Cohen
Tannoudji and S. Chu began to study the forces exerted on atoms by light. This work
led to the ability to cool and trap ensembles of atoms, or even single atoms, and cul-
minated in the experimental demonstration by E. Cornell and C. Weimann of a Bose
Einstein condensate using a dilute gas of rubidium atoms at NIST in 1995, followed
soon thereafter by W. Ketterle at Harvard. Discoveries in this field continue to en-
lighten our understanding of many body quantum physics, quantum information and
non linear quantum field theory. We hardly touch on this subject in this book, which
is already well covered in a number of recent excellent texts, choosing instead to
highlight some aspects of the emerging field of quantum atom optics.



