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Lecture 1

Linear Groups and
Linear Representations

1. Basic Concepts and Definitions

Definitions 1. A topological (resp. Lie) group consists of a group structure
and a topological (resp. differentiable) structure such that the multiplication
map and the inversion map are continuous (resp. differentiable).

2. A topological (resp. Lie) transformation group consists of a topological
(resp. Lie) group G, a topological (resp. differentiable) space X and a contin-
uous (resp. differentiable) action map ®: G x X — X satisfying ®(1,z) = z,
®(g1, (92, 2)) = (9192, 7).

3. If the above space X is a real (resp. complex) vector space and, if for all
g € G, the maps ®(g) : X - X : £ — ®(g, z) are linear maps, then G is called
a real (resp. complex) linear transformation group.

Notation and Terminology 1. A space X with a topological (resp. dif-
ferentiable, linear) transformation of a given group G shall be called a topo-
logical (resp. differentiable, linear) G-space. In case there is no danger of
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ambiguity, we shall always use the simplified notation, g- z, to denote ®(g, z).
In such a multiplicative notation, the defining conditions of the action map &
become the familiar forms of 1 -z =z and g; - (92 - ) = (9192) - .

2. Amap f: X — Y between two G-spaces is called a G-map if for all
geGandallze X, f(g-z)=g- f(z).

3. A linear transformation group ® : G x V — V, or equivalently, a ho-
momorphism ¢ : G — GL(V), is also called a linear representation of G on
V. Two linear representations of G on V] and V;, are said to be equivalent
if Vi and V, are G-isomorphic, namely, there exists a linear isomorphism A:
Vi — V, such that for all g € G and all z € V;, A- ®1(g,z) = ®2(g, Az), or
equivalently, one has the following commutative diagrams:

oxv,—2_»y GL(V,)
/
1,xA A G O
q)z R
Gx ¥, ————> V, GL(V))

where 04(B) = ABA™! for B € GL(W}).
4. For a given G-space X, we shall use G, to denote the isotropy subgroup
of a point z and use G(z) to denote the orbit of z, namely

G:={9eG:g -z =z},
Gz)={g9-z:9€G}.

It is clear that G4, = gGzg~! and the map g — g - z induces a bijection of
G/G; onto G(z).

Definitions 1. A (linear) subspace U of a given linear G-space V is called
an invariant (or G-) subspace, if

G-U={9g-2:9€G,zeU}CU.

2. A linear G-space V' (or its corresponding representation of G on V) is
said to be irreducible if {0} and V' are the only invariant subspaces.
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3. A linear G-space V (or its corresponding representation of G on V) is
called completely reducible if it can be expressed as the direct sum of irreducible
G-subspaces. .

4. The following equations define the induced linear G-space structures of
two given linear G-spaces V and W.

(i) direct sum: V & W with g - (z,y) = (9z, gy)-

(ii) dual space: V* with (z,g9-2') = (¢7! - z,z’). (Notice that the inverse
in the above definition is needed to ensure that (z,g; - (g2 - 2)) =
(z,(g1-92)-2') forallz e V, 2’ € V*))

(iii) tensor product: V@ W withg- (z®y)=9-zQ®g-y.

(iv) Hom(V,W): A € Hom(V,W), (g- A)z = gA(g™! - z).

It follows from the above definition that the usual canonical isomorphisms
such as

Hom(V, W)= V*@W,
(VeWw)y =v'eWw"*,
U(VeW)=UV)es (UW)

are automatically G-isomorphisms. Moreover, an element A € Hom(V, W) is
a fixed point if and only if it is a G-linear map. ¢! A = A & forall g € G,
g 'A(gz) = A(z), i.e. A(gz) = gA(z).

Of course, one may also define the induced G-space structure for the other
linear algebra constructions such as A¥(V'), S¥(V), etc., and again the canoni-
cal isomorphisms such as V@V = A%(V) @ S?(V) will also be G-isomorphisms.

Schur Lemma Let V, W be irreducible (linear) G-spaces and A: V - W
be a G-linear map. Then A is either invertible or A = 0.

Proof: Both kerA C V and ImA C W are clearly G-subspaces; it
follows from the irreducibility assumption that

ker A = {{0} ImA={{O}
V. w.

’

Therefore, the only possible combinations are exactly either (i) ker A = {0}
and In4 = W, ie. A is invertible, or (ii) kerA = V and Im4 = {0},
ie. A=0. O
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In the special case of V' = W and the base field C, one has the following
refinement.

Special Form If V is an irreducible G-space over C and A is a G-linear
self-map of V, then A is a scalar multiple, i.e. A = \g-I for a suitable \g € C.

Proof: It is obvious that A— AI is also G-linear for any A € C. Let g be
an eigenvalue of A; this exists because C is algebraically closed. Then A — oI
is not invertible and hence must be zero, i.e. A = A\¢I. O

Corollary A complez irreducible representation of an Abelian group G
is always one-dimensional

Proof: Let ¢ : G — GL(V) be a complex irreducible representation.
Since G is commutative, ¢(g) - ¢(go) = ¢(go) - #(g) for all go, g € G. Hence,
for each g, ¢(g) is a G-linear self-map of V' and therefore ¢(g) = A(g) - I for
a suitable A(g) € C. g, however, is an arbitrary element of G, thus Im¢ =
{¢(g9) : g € G} C C* - I, the set of nonzero scalar multiples. Therefore any
subspace of V' is automatically G-invariant, and hence it can be irreducible
only when dimV = 1. O

2. A Brief Overview

Before proceeding to the technical discussion of linear representation theory,
let us pause a moment to reflect on some of the special features of linear
transformation groups, to think about what are some of the natural problems
that one might pursue and to have a brief overview of the fundamental results
of such a theory.

Among all kinds of mathematical models, vector space structure is un-
doubtedly one of the most basic and most useful type; it is a kind of ideal
combination of straightforward algebraic operations and simple, natural geo-
metric intuitions. Correspondingly, linear transformation groups also inherit
many advantageous nice features. For example, they are conceptually rather
elementary and concrete; they are easily accessible to algebraic computations;
they can be readily organized by the canonical constructions of linear algebra,
e.g., direct sum, tensor product, dual space, etc., and moreover, they also en-
joy the beneficial help of geometric interpretation and imagination. Therefore,
they are a kind of ideal material to serve as the “films” for taking “reconnai-
sance pictures”.
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The theory of representations of groups by linear transformation was cre-
ated by G. Frobenius, here in Berlin during the years 1896-1903. His basic
idea is that one should be able to obtain a rather wholesome understanding of
the structure of a given group G by a systematic analysis of the totality of its
“linear pictures”. Next, let us try to formulate some natural problems along
the above lines of thinking.

1. Problem on complete reducibility

If all representations of a given group G happen to be automatically com-
pletely reducible, then the study of linear G-spaces can easily be reduced to
that of irreducible ones. Therefore, it is natural to ask “What type of groups
have the property that all representations of such groups are automatically
completely reducible”?

2. Problem on irreducibility criterion
How to determine whether a given representation is irreducible?

3. Problem on classification

How to classify irreducible representations of a given group G up to equiv-
alence? ‘

Finally, let us have a preview of some of the remarkable answers to the
above basic problems obtained by G. Frobenius and I. Schur.

Theorem 1. If G is a compact topological group, then any real (resp.
complez) representation of G is automatically completely reducible.

The key to the classification theory of linear representations of groups is
the following invariant introduced by G. Frobenius.

Definition Let ¢ : G — GL(V) be a given complex representation of G.
The complex valued function

X6 :G 3 GLV) B C: g tre(g)

is called the character (function) of ¢.

1. x4(g) = tr ¢(g) is the sum with multiplicities of the eigenvalues of ¢(g).
Hence, it is quite obvious that equivalent representations have identical char-
acter functions, namely, the character function is an invariant of equivalent
classes of representations.
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2. If g1, g2 are conjugateplus in G, i.e. there is some g € G such that
91 = gg2g™", then

x4(91) = x6(99297") = tr(d(g)B(92)p(9) ") = tr d(g2) = xo(92) -

Hence, the character function of an arbitrary representation ¢ of G has the
special property of constancy on each conjugacy class of G.
3. If ¢ = @1 @ P9, then it is easy to see that for all g € G,

xvw(9) = x4:(9) + Xx4.(9) »

namely, Xy = X¢, + X4, as functions.
The most remarkable result of Frobenius—Schur theory is the following clas-
sification theorem.

Theorem 1. IfG is a compact topological group, then two representations
¢ and 9 are equivalent if and only if x4 = xy as functions.

3. Compact Groups, Haar Integral and the
Averaging Method

Let G be a finite group and V be a given linear G-space. Then, to each point
z € V, the center of mass of the orbit G(z) is clearly a fixed point of V. Hence,
the map

z — T = the center of mass of G(z) = 1] Z g-z
g€C

is a canonical projection of V onto V€, the subspace of fixed points in V.
In terms of a chosen coordinate system, the ith coordinate of Z is simply the
average value of the ith coordinate of {g-z : g € G}. We shall proceed to
generalize the above useful method of producing fixed elements, namely, the
averaging method, to the general setting of compact topological groups. Of
course, the key step is to establish the correct meaning of the average value of
a given continuous function f : G — R.

3.1. Haar integral of functions defined on compact groups

Let G be a given compact topological group and C(G) be the linear space
of all (real valued) continuous functions of G equipped with the sup-norm
topology. It is not difficult to show that every continuous function f € C(G)
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is automatically uniformly continuous, i.e. to any given § > 0, there exists a
neighborhood U of the identity in G such that zy~! € U = |f(z) — f(y)| < 6.
The translational transformation of G x G on G, namely,

T:(GxG)xG—G:(91,92) - =+ g1zg; "
naturally induces a continuous linear transformation of Gx G on C(G), namely,

((91,92) - fl(z) = f(91 'zg2), feC(G), (91,92) G xG.

Theorem 3. There ezists a unique G-projection I : C(G) — R (the
subspace of constant functions). [I(f) is called the average value, or Haar
integral, of f.]

Proof: (a sketch) i. Let A be a finite subset of G x G with multiplicities
and f € C(G). Set I'(A, f) to be the center of mass of A - f, namely,

D4, f) = o S mla) - f,
|A| acA
where m(a) is the multiplicity of a and [A| =} m(a) is the total weight. For
two finite subsets A, B of G x G with multiplicities, A- B is again a finite subset
with multiplicities and it is easy to check that I'(A,T'(B, f)) =T'(A - B, f).
ii. Set Ay = {['(A, f) : A is a finite subset with multiplicities of G x G}.
For each h € C(G), set

w(h) = max{h(z) : ¢ € G} — min{h(z) : z € G}.

Let C(f) be the greatest lower bound of {w(h) : h € Ay} and {h,} be a
minimizing sequence, namely, w(h,) = C(f) as n — oo. It is straightforward
to check that Ay is a family of equicontinuous functions, namely, to any given
& > 0, there exists a neighborhood U of the identity in G such that

(Vh € Af)zy™' € U = |h(z) — h(y)| < 6.

Therefore, there exists a converging subsequence of {h,} and hence one may
assume that {h,} is itself convergent to begin with.

iii. Set A = lim h,,. Then it is clear that w(h) = C(f). Finally, one proves
by contradiction that w(h) = C(f) = 0! For otherwise, one can always choose
a suitable finite subset A € G x G such that

w(D(A, h)) < w(h) = C(f).
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Moreover, it is straightforward to check that I'( A, h,,) converges to I'(4, k) and
lim w(I'(A, hy)) = w(T'(A, k). But all T'(A, h,) are obviously also element of
Ay, which contradicts the fact that C(f) is the greatest lower bound for all
w(h). (We refer to L. S. Pontriagin’s book Topological Groups for the details
of the above proof due to von Neumann.) O

The above continuous G x G-equivariant, linear functional I : C(G) — R
uniquely determines a G x G-invariant measure of total measure 1 on G (called
the Haar measure) such that I(f) = [, f(g)dg for all f € C(G).

3.2. Ezistence of invariant inner (resp. Hermitian) product

As the first application of the averaging method, let us establish the following
basic fact which includes Theorem 1 as an easy corollary.

Theorem 4. Let V be a given real (resp. complez) linear G-space. If G
is a compact topological groups, then there exists a G-invariant inner (resp.
Hermitian) product on V, namely

(9-2,9-y)=(z,y) forallz,yeV,geG

Proof: Let (z,y) be an arbitrary inner (resp. Hermitian) product on V.
Set

(z,y)=/G(g-x,g-y)dg-

It is straightforward to verify that (z,y) is again an inner (resp. Hermitian)
product on V, and moreover

(a~:v,a'y)=/G(ga‘x,ga-y)dg-

Letting ¢’ = ga, dg’ = dg, then

(a-x,a-y)=/G(g":c,g"y)dg'=(m,y)-

O

Definition A real (resp. complex) linear G-space with an invariant in-
ner (resp. Hermitian) product is called an orthogonal (resp. unitary) G-space,
and the corresponding representation is called an orthogonal (resp. unitary)
representation.
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In an orthogonal (resp. unitary) G-space V, the perpendicular subspace to
an invariant subspace is automatically also an invariant subspace.

Proof of Theorem 1: By Theorem 4, one may equip V with an in-
variant inner (resp. Hermitian) product. Let U by a positive dimensional
irreducible sub-G-space of V and U+ be its perpendicular subspace. Then
V = U @ U+ is a decomposition of V into the direct sum of sub-G-spaces,
dim U+ < dim V. From here, the proof of Theorem 1 follows by a simple
induction on dim V. O

Exercises 1. Let O(n) € GL(n,R) (resp. U(n) C GL(n,C)) be the
subgroup of orthogonal (resp. unitary) matrices. Show that they are compact.

2. Let G c GL(n,R) (resp. GL(n,C)) be a compact subgroup. Show that
there exists a suitable element A in GL(n,R) (resp. GL(n,C)) such that

AGA™!' c O(n) (resp. U(n)).

3. Show that O(n) (resp. U(n)) is a mazimal compact subgroup of GL(n, R)
(resp. GL(n,C)) and any two maximal compact subgroups of GL(n,R)
(resp. GL(n,C)) must be mutually conjugate.

4. Let ¢, ¢ be two complex representations of a compact group G. Then

Xoou(9) = x4(9) - xy(9) for all g € G. (Thanks to Theorem 4, ¢(g) and ¥(g)
are always diagonalizable.)

4. Frobenius-Schur Orthogonality and the
Character Theory

Now let us apply the averaging method to analyze the deep implications of the
Schur lemma.

Case 1: Let ¢ : G — GL(V), ¥ : G — GL(W) be two non-equivalent,
irreducible complex representations of a compact group G. Then it follows
from the Schur lemma that

Homg (V, W) = Hom(V, W)€ = {0}.

(Recall that X© denotes the fixed point set of a G-space X.) Therefore, it
follows from the averaging method that for all A € Hom(V, W)

/g-Adg=/w(g)-A-¢(g)’ldg=0,
G G
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because [, g- Adg is the center of mass of G(A) and, of couise, it is always a
fixed point! :

By Theorem 4, one may equip both V and W with invariant Hermitian
products and compute the above powerful equation in its matrix form with
respect to chosen orthonormal bases in V and W. Let E;; be the linear map
which maps the kth base vector of V' to the ith base vector of W and all the
other base vectors of V' to zero.

Since the above equation is linear with respect to the parameter A and
{Eix : 1 <1 <dim W, 1 < k < dim V} already forms a basis of Hom(V, W),
one needs only to compute the special cases of A = Eji. Set

#(9) = (x(9)),  ¥(9) = (¥i;(9)) -
(¢xi(9),v%i;(9) € C(G) are called representation functions.) One has

o= /G ¢ Basily= /G (¥35(9)) - Eas - ($11(9))"dg

= / (Yia(9) - Brs(9))dg -
G

Hence
| $ala) - Bus(a)dg =0,

for1<i,a<dim W,1<k,b<dim V.
Case 2: The special form of the Schur lemma asserts that

Homg(V,V) = Hom(V,V)¢ = {A\-I: A € C*}.
Hence, it again follows from the averaging method that

/g-Bdg=/¢(9)-B-¢(9)"dg=/\3-1,
G G

where Ap is a yet-to-be-determined complex number solely depending on B.
Exploiting the linearity and the conjugate invariance of the trace, one has

Ap-dimV = trag I =tr [3¢(g)-3-¢(g)-‘dy

— [ 5(6(9)- B 8(6))dg = [ trBag
G G

=trB

which determines the value of g, namely



