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PREFACE

By its nature, set theory does not depend on any previous mathematical knowl-
edge. Hence, an individual wanting to read this book can best find out if he is
ready to do so by trying to read the first ten or twenty pages of Chapter 1. As
a textbook, the book can serve for a course at the junior or senior level. If a
course covers only some of the chapters, the author hopes that the student will
read the rest himself in the next year or two. Set theory has always been a sub-
ject which people find pleasant to study at least partly by themselves.

Chapters 1-7, or perhaps 1-8, present the core of the subject. (Chapter 8 is
a short, easy discussion of the axiom of regularity). Even a hurried course should
try to cover most of this core (of which more is said below). Chapter 9 presents
the logic needed for a fully axiomatic set theory and especially for independence
or consistency results. Chapter 10 gives von Neumann'’s proof of the relative
consistency of the regularity axiom and three similar related results. Von
Neumann's ‘inner model’ proof is easy to grasp and yet it prepares one for the
famous and more difficult work of Godel and Cohen, which are the main topics
of any book or course in set theory at the next level. Chapter 9 might be slightly
easier for someone who has already studied logic, but it is written to be
understandable by a reader with no background in logic. Actually, some of the
logic given in Chapter 9 is not covered in most first year logic courses (and most
of what they do cover is not needed in Chapter 9 or 10). After Chapters 1-8,
the thing most required for further work in set theory (and so the thing next
to be included in a longer course) is the material of Chapter 9 (and Chapter 10).
The last Chapter, 11, returns to ‘straight’ set theory and can be read after Chapter
7. Its first part adds to the earlier cardinal arithmetic, and its second part to
the earlier ordinal arithmetic. Most people find these topics attractive and easy,
and will indeed read them by themselves if a course does not cover them.

For many years, the widely used introductory books on set theory all presented
intuitive set theory. For the past two or three decades, the exact opposite has
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been true: all such books have given axiomatic set theory. But for the student,
the trivial and irritating business of fooling around, as he begins to learn set
theory, with axioms (saying for example that {x,y] exists!) discourages him from
grasping the main, beautiful facts about infinite unions, cardinals, etc., which
should be a joy.

Therefore, we shall work in intuitive set theory in the first five of the seven
main chapters. The axioms are discussed in the very short Chapter 6. By that
time, many of the special features of the axiomatic business will be seen by the
student to be trivial, as they should be. At the end of Chapter 6 the reader has
all of Chapters 1-5 behind him axiomatically. In Chapter 7 (on well-orderings)
we now work from the axioms, but the reader sees at once that there is prac-
tically no difference between working intuitively and working axiomatically.

Two other pedagogical devices are used to increase the reader’s speed in get-
ting the main ideas — the first (which the author learned from Azriel Levy when
he was teaching in Berkeley) is this: Cardinals, order types, etc., are not de-
fined (in some ad hoc way) until Chapter 7; but, in Chapter 2, we just ‘grab’ them,
as Cantor did. The other device imitates the famous book (or books) of Hausdorff
[F1914 and F1927 (English edition 1957)] in putting off the serious study of well-
orderings as long as possible — in fact until Chapter 7. (Even in Cantor's work,
some ideas are less natural and easy then others!) As a side-effect, well-ordering
is studied (in Chapter 7) while working axiomatically; and it is just possible that
this subject (particularly definition by induction) is one of the few more easily
grasped working axiomatically than intuitively.

The author is indebted to his own teacher in set theory and logic, Alfred Tarski,
for many things in this book. Some recent students have suggested various
shorter proofs, which have been gratefully used. The author is very grateful to
Shaughan Lavine, who prepared the index and also assisted with the proof-
reading, making many corrections and improvements.
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INTRODUCTION

Set theory has two overlapping aspects. In one, it is a branch of mathematics,
like algebra or differential geometry, with its own special subject matter. In its
other aspect, set theory is not a branch of mathematics but the very root of
mathematics from which all branches of mathematics rise. (In this picture only
logic lies still below set theory. Together they are often called the ‘foundations
of mathematics.”)

This Introduction contains some remarks about the (early) history of set theory.
The book proper, the mathematics, begins with Chapter 1 and does not depend
on the Introduction. The remarks below should be read (rapidly for pleasure)
now or perhaps after reading much of the book, or both.

Set theory, in its aspect as one branch of mathematics, is devoted particularly
to the theory of infinite cardinal and ordinal numbers. Perhaps not even relativity
theory can be said to have sprung so completely from the mind of one man as
did set theory (in this aspect)! That man was Georg Cantor. Cantor lived from
1845 to 1918, his main publications appearing between 1874 and 1897. (For
reference to Cantor’s papers see the bibliography of Fraenkel [1960].) Cantor
was also one of the founders of point set topology which in turn had arisen in
a study of trigonometric series. Cantor’s set theory stands as one of the great
creations of mathematics. David Hilbert is widely considered to be the leading
mathematician of the last hundred years. Replying to some who thought that
the paradoxes (see below) might destroy Cantor’s theory of sets, Hilbert spoke
of “a paradise created by Cantor from which nobody shall ever expel us” (cf.
Fraenkel [1961], p. 240). Reader: Note what lies ahead for you!

The early story of the ‘foundations aspect’ of set theory goes back farther,
and it is not concentrated in the work of one man. Actually, in the years 1800-1930
the entire mathematics went through a major change (at the very least, of style)
into what every subject calls today its ‘modern approach.’ Set theory and logic
played a key role in this change, but that role is nevertheless sometimes over-
estimated. In fact, every branch of mathematics was going through the same
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convulsions. For example, in algebra the (central modern) notion of isomorphism
began to appear by 1830 or earlier in the work of Galois and others, but the
simple, general modern concept is not exactly present until perhaps 1910 (Steinitz
on fields) or even 1920! One might think nothing special was happening here,
as mathematics is always evolving. But B.L. von der Waerden's Modern Algebra
[F1950], a graduate-level algebra book, appeared first in 1930, and is still widely
used as a textbook today, fifty years later! During 1850-1930 the serious changes
in style always going on would have made such a thing almost impossible. An
essential feature of the modern approach is just that there is in a sense an end
of the line in style and rigor. In most fields that was reached within ten years
of 1930!

The early developments in (the foundations aspect of) set theory were closely
connected with the ‘convulsions’ in analysis in the 19th century. In a reversal
of the lack of rigor in the 18th century, the modern, rigorous approach to analysis
began to appear in the early 1800’s. By 1830, Cauchy and others were able to
use almost the modern style in defining limits or continuity. One man ahead of
his time went even further than Cauchy towards our modern analysis, namely
the priest, B. Bolzano (1781-1848) (see [FF1810], [F1837], and [FF1851])*. Bolzano
began, in particular, to use the notion of (arbitrary) set much more in analysis.
In the same period the closely related notion of arbitrary function was emerg-
ing, e.g., in the work of Fourier (1810), Dirichlet (1840), and Riemann (1826-1866).
(One date as in “Fourier (1810),” refers to the time of a key publication). Bolzano
is indeed the only person ever proposed as a predecessor for Cantor (and was
so even by Cantor himself). Bolzano had begun (but only begun) to study the
notion ‘A and B can be put in one-to-one correspondence’ — the keystone of
Cantor’s theory.

By 1861, K. Weierstrass was able to give almost our idea of a ‘modern’ course
in real variables! A decade or so later, Dedekind and Cantor created what are
still the two main methods for constructing the reals from the rationals. This
was a needed step in reducing all of mathematics to set theory. Richard Dedekind
(1831-1916), an older mentor and longtime friend of Cantor’s, contributed much
to the set-theoretical study of the natural numbers. His famous book Was sind
und was sollen die Zahlen [F1888] is full of passages which were new then but
are now spoken in every beginning course in real variables or modern algebra.
G. Peano (1895) is also famous for his contributions to the same subject.

Ernst Zermelo [FF1904, 1908, 1908a, 1909, 1913] seems to have been the first
to take each natural number to be a certain set. He also was the first to know
(although in an odd way) how to get along with only € and without the ordered
couplet (though later Norbert Wiener in 1915 pointed out the much more elegant

* References like “Bolzano [F1851]” are explained at the beginning of the Bibliography.

tRoughly, Zermelo observed he could get along using only functions f: A ~ B where
A and B are disjoint; and that such an f can be taken to be a suitable set of doubletons
{a,b]. (The author learned this from Gregory Moore.)
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fact that one can simply define a reasonable notion of ordered couple using only
€.) These two steps taken by Zermelo were among the last needed to show that
one could do the entire mathematics in a set theory using only the notion ‘belongs
to.” Clearly these steps were not unrelated to Zermelo’s most famous contribu-
tion, made in 1908, when he gave the first axiom system for set theory (and
hence for all of mathematics). The most frequently used axioms today are nearly
just his! Nevertheless, Zermelo’s axiomatic work was lacking in one respect, as
he did not realize that an axiomatic system cannot be fully understood until its
underlying logic is fully understood.

Earlier, at exactly the same time as Cantor, there was a man, of perhaps the
same brilliance as Cantor, who leaped ahead fifty years in the subject of logic.
That man was Gottlob Frege. (His key publications were in 1879-1903). Some
of his contributions will be mentioned a bit later on.

In the years 1897-1902, paradoxes (that is, contradictions) were discovered
by Bertrand Russell and others using what perhaps might be taken as accept-
able set-theoretical axioms. (Frege, almost alone, had actually assumed these
axioms!) For many decades, the paradoxes were considered to be the central
feature of set theory or at least of its foundations. For example, many books
seemed to imply that the whole purpose of the axiomatic approach in set theory
was to deal with the paradoxes (awkward for Euclid!) In recent times, the
paradoxes have been assigned a lesser importance, though certainly a great one.
In fact, Cantor himself knew that it was necessary to distinguish between ‘or-
dinary’ sets and very large, ‘bad’ collections. Obviously, Zermelo had very good
reasons for studying the axiomatization of set theory (and the whole of
mathematics!) — even without the paradoxes. But the paradoxes have certainly
played a central role in mathematical philosophy for decades. Another controversy
has been over the axiom of choice — which was made famous by Zermelo in
1904 when he derived from it the well-ordering principle. Both the paradoxes
and the axiom of choice will be discussed (mathematically) in later chapters, where
some brief remarks will be made on their history and, in general, on the history
of set theory after 1900.

Let us return to the history of a fully correct axiomatization of set theory (which
we shall follow up to 1930). Frege had provided just the understanding of logic
and logistic systems needed for a fully correct axiomatization. (A logistic system
is a deductive system in which the notion of what is a proof is so clear it can
be decided by a machine.) Unfortunately, Frege's work was not widely known
even by 1900. However, at almost the same time as Zermelo's axiomatization,
another very different axiomatization of set theory was carried out by Bertrand
Russell and Alfred North Whitehead in their famous three volume work,
Principia Mathematica. From the point of view of a working mathematician,
Zermelo’s axioms were (and are) tremendously better than the awkward system
of the Principia. However, Russell and Whitehead knew and appreciated Frege's
work in logic. They included formal logic in their work and, although possibly
with some flaws, their work was a logistic system (for set theory and the whole
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of mathematics). It is thus clear why this awkward work was so acclaimed and
so influential.

There remained the (actually very easy) problem of getting a system both
workable and fully logistic. In [F1923), Thoralf Skolem succeeded, say, 95% in
simply making the working system of Zermelo into a logistic one. He proposed
that Zermelo’s ‘schemas’ (which caused the trouble) be replaced by the infinite
set of their ‘c-instances’ (exactly as is often done today). But, alas, it seems unlike-
ly that Skolem grasped then the idea of a logistic system for logic. (In his other
papers of the time, he always considers that the only meaning of ‘logically valid’
is ‘holds in all models.’) Nevertheless, it seems that in 1923, to the advanced
logicians in the famous ‘Hilbert group’ in Germany and the famous ‘Polish group,’
Skolem'’s paper must have suggested the full logistic system, just asit does today.

In the very same paper, Skolem shared at least partly with Adolf Fraenkel
[L1922] and Dmitri Mirimanoff [L.1917] the (independent) discovery of the prin-
cipal missing axiom in Zermelo’s system, needed to carry out Cantor’s original
work — the axiom of replacement. (Fraenkel’s influence in the matter was
greatest and the axiom is often called ‘Fraenkel’s axiom.’)

There is one other axiom usually included today, namely, the axiom of regulari-
ty. This axiom concerns ‘partial universes’ which are loosely related to Russell’s
‘types.’ The partial universes and the axiom of regularity were first considered
by Mirimanoff [L.1917] (and also in Skolem [F'1923]). They were given a definitive
study by Johan (later John) von Neumann in a group of papers on set theory
[F1923-1928].

In the same group of papers, the young von Neumann, who was to become
perhaps the greatest mathematician of the first half of the twentieth century,
published the first flawless axiomatization of set theory. In fact, it had its own
awkwardness and has rarely been used! A workable modification of it was given
by P. Bernays [F'1937-1954). Notice that the two systems of set theory (which
do not differ very much) most used today (Zermelo-Fraenkel and von Neumann-
Bernays) were achieving exactly their present form in just the years when van
der Waerden’s Modern Algebra appeared!



1. SETS AND RELATIONS
AND OPERATIONS
AMONG THEM

The mathematical content of Chapter 1 is easy, so the chapter should be read
rather rapidly.

Before we begin to study sets, a brief remark about logic will be made. The
reader is probably already familiar with at least some of the following logical
symbols or abbreviations:

~ for mot, or it 18 not the case that.

v for or.
A for and.
= for if then i
- for ifand only iof _____.. . (Also: ‘iff’.)
vx ______ for for all z,
3x _________ for for some x, _______ or there exists an x such
that s . 5.
3lx______ for there exists exactly one x such that
wx ___ for the unique x such that

x = y for x equals y, or x and y are identical.

In theoretical discussions about the language we use — for example in Chapters
6 and 9 - it is very useful to suppose, or pretend, that we write in a purely
symbolic language.

On the other hand, in actually doing mathematics it is desirable to write in
pure English (or whatever ordinary language), not using any logical symbols
(except = ). The reason is that in the ordinary language one has a rich tradi-
tion of conventions for how to write grammatically and even for how to argue.
On the other hand, in ‘popular symbolic logic’ there is no convention for deal-
ing (as in a proof) with more than one sentence at a time. A single sentence
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in symbolic logic is readable, and hence logical symbols are occasionally used
in the statement of a theorem or definition. If the reader will look at any cur-
rent journal in mathematics (even on logic) he will find virtually no use of logical
abbreviations!

Even though they will not be used much, the logical symbols listed above
are helpful in understanding ordinary (English) mathematical usage. For ex-
ample, we realize that ‘for all x,’ ‘for any x,’ ‘for every x’ and ‘for each x’ all
are just the same (namely, ‘vx’). Moreaover, our attention is called to the great
importance in mathematics of the English passages above (corresponding to
the symbols). In particular, most people need to overcome some odd initial reluc-
tance to use themselves the phrase ‘the unique x such that’ — which one must
do throughout modern mathematics!

§ 1. Set algebra and the set-builder

If we have conceived of some things (of any kind), then we can conceive of
sets of these things — and sets of sets, etc., etc. We may have started with
some things which are not sets themselves (‘non-sets,’ ‘atoms,’ or in German,
‘Urelementen’). In one natural form of set theory we make just these assump-
tions, leaving undecided whether there are a small number or a large number
of non-sets. In the most popular set theories today, and in this book, we do
make an assumption about the non-sets, namely, that there are not any at all
(among the things we choose to consider). Speaking roughly, here are some
reasons for making this assumption:

As we will soon see precisely, there is nevertheless an empty set, @; also the
set (@) whose only member is @; the set {0, {@) }; the infinite list of sets @,
{0}, ((8)), (({@]}]}, etc.; the infinite set containing all of these latter, and
so on and so on. One (interesting but not decisive) argument for considering
no non-sets (and thus as is said only ‘pure’ sets) goes as follows: In mathematics
we are only concerned with form, and thus with, for example, a group only
up to isomorphism. Every group obtained starting with non-sets is isomorphic
to one in our world of pure sets; so nothing is lost, perhaps, in considering only
pure sets.

In fact, there are times when set theory allowing non-sets is useful, and this
theory is not completely covered by our theory of pure sets. But, in practice,
it is usually very easy to develop any needed part of set theory with non-sets,
if one already knows pure set theory. Also, allowing non-sets causes a lot of
trivial difficulties which obscure the things which really matter. So as a prac-
tical matter, it is convenient to consider, as we do here, only pure sets
(henceforth called plain ‘sets.’) We may still give informal examples involving
non-sets.

Henceforth, letters ‘x’, ‘y’, ‘A’, ‘B’, etc., etc,, all range over sets (or really,
‘pure sets’). Hence, it is optional, for example, whether one says ‘for any 4’
or ‘for any set 4.

We understand as in ordinary English the statement ‘x belongs to 4’ or the



Sets and Relations and Operations Among Them 7

synonymous ‘x is a member of A’, which we abbreviate by: x € 4.

Suppose C'is the set of all American citizens and D is the set of all American
citizens less than twelve feet tall. Then C and D have exactly the same members
but have been defined in different ways. Ordinary usage does not take a
definitive stand as to whether C and D should be considered to be identical.
In mathematical usage, ambiguities are not tolerated. If both usages seems
interesting, mathematics just studies both, using two names! In mathematical
usage it is generally agreed to use the words ‘set’ and ‘belongs to’ in such a
way that the sets C and D above are considered identical. This convention is
expressed systematically in what is called the

Axiom of Extensionality. If, for any x, x € A ifand only ifx € B, then A =

(One says ‘extensional’ because the different intensions, as, say, in our descrip-
tions above of C and D, are being disregarded.) Note that we will mention some
axioms in the non-axiomatic development of Chapters 1-5 (as was always done
historically). But in non-axiomatic or intuitive set theory one does not work
only from the axioms mentioned but allows other intuitions to be used.

We say that A is a subset of B, or A4 is included in B, or, in symbols, A € B
if every member of A is a member of B. It follows at once that, in general:
A S A (inclusion is ‘reflexive’); if A € Band B € C then 4 € C (inclusion
is ‘transitive’). Moreover, the Extensionality Axiom can now be written: if
A < Band B € A then A = B (inclusion is ‘antisymmetric’).

Once in a while, instead of discussing sets (which are ‘somewhere else’!) we
discuss our own language, say, chalkmarks on the blackboard (which are ‘in
this room’). All expressions in the language of mathematics can be divided (in
an extremely important way) into three classes: (1) asserting expressions; (2)
naming expressions; and (3) ‘neither of these”: The reader will at once be able
to classify in this way the following expressions: x + ; u + 2; x < y; the uni-
que y such that x + y = 3; thesetof all xsuchthatx < 2; < x + 3; x <y
orx < z; and ]fx’dx. Also (using logical symbols) x < o (y* = 2); vzz; 3!x
(x is the Queen of England). (The answers are: 3,2, 1,2, 2,3,1,2,1,3,1)

A key notion of set theory is that of forming the set of all x such that ...,
which is abbreviated [x: ... }.(The symbols { —: — — — ] are sometimes called
the set-builder. Note to reader: Always read [x: ...} in full as “the set of all
x such that ...”.) For example, one can form (x:x = 1 or x = 2] and [x:
x is a real number}, etc.

Clearly, in the expression “[x: ... ", the dots are always to be replaced by
an asserting expression. (Thus this grammatical notion is just what is needed
here!). An extension of this usageis {———: ...} asin {n’ + n: nis a positive
integer) which is read: the set of all n’ + n such that n is a positive integer.
In {—-=:...], the... is still to be asserting, but the ‘'~ — - is clearly to
be a naming expression. These two set-builder notions do not have to be taken
as primitive (or governed by the English meaning), but can be introduced in
a simple way by definition, as follows:
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Definition 1.1.

(a) {x: ®x] = the unique A such that for any x, x € A if and only if ®x.
(b) [@,: ®x} = [u: for some x, u = @, and Px].

In Definition 1.1 we are using in a special, familiar way, the capital script
letters ‘@, ‘Q’, etc. and also in a related but different way the capital script
letters ‘@', ‘®’, etc. By properly using these letters, we can avoid the awkward
and unclear ‘...’ and ‘ — — — ' which we used above. Sometimes ‘®’ (for example)
has, say, two places instead of one as in 1.1, and then one writes ‘®ab’, ‘®xx’,
ete. Of course, for example, ‘®x’ is an asserting expression; while in 1.1(b) (and
always) ‘@, is a naming expression.

The letters ‘®’, ‘Q’ are called predicate (or sometimes, class) variables; while
‘@', ‘®’, etc. are called operator variables. Our old letters ‘x’, ‘y’, x" ¢, - -+, ‘A4’
‘B’, --- are commonly called ordinary variables or, simply, variables.

As usual, if we accept as valid a statement involving, say, the predicate
variable ‘®’, like 1.1(a) above, then we also accept as valid each instance of
our statement, that is, each statement obtained from the original one by
substituting for ‘®’ a particular asserting expression. (For example, in 1.1(a)
one might replace ®x throughout by, say, 3u(x € u A u € B). Similarly (in for-
ming an instance) one can replace, e.g., ‘@’ in a given statement by a particular
naming expression (say, replace @, by x* + xy).

We consider now the actual meaning of {x: ®x}, that is: the unique set A4
such that for any x, x € A iff ®x}. Clearly, by Extensionality, there is always
at most one such A. The famous ‘paradoxes’ of set theory (cf. §2) involve cases
of ®x where there is no such A4, i.e., {x: ®x) does not exist! In intuitive set
theory we adopt the (dubious) attitude that we will assume that [x: ®x} does
exist in all cases that seem natural (and hence all that we shall consider without
comment); and we will imagine that our good sense will keep us from trying
to form {x: ®x} in any ‘bad’ case!

We will now discuss much more straightforward things, namely, the so-called
Boolean operations on sets. (These were first studied by George Boole in 1847
and by A. de Morgan in the same period.) We define:

-

AU B = [x:x€Aorxe B}, called the union of A and B.

AN B = [x:x€Aand x € B], the intersection of A and B.

lA —B=[x:x€Aand x¢ B}, A minus B.

A © B = (A - B)U (B - A), the symmetric difference of A and B.

0 = {x:x # x], the empty set (clearly by Extensionality
o the unique set with no members).

[}

X - A is also written 4™ (and called: the complement of A with respect to



