Broadview PEARSON ERERPR

www.broadview.com.cn

Effective Java «

(52h)

[Z£] Joshua Bloch =

* ap o ° | =ua L e
B e e [SE22 %

Iwww.phei.com.cn

- [RIRAE R

Effective Java

(2R)

Effective Java, 2E

(=)

[2£] JoshuaBloch =

% F I ¥ & R AL
Publishing House of Electronics Industry
JE3T-BEIING

SEX-RN
A48 T4 Java BB 78 AlE S ELAT SR O M2 TR, X 2o 2000 BN i3k T Kby IF
s N BV T BTG A VS R 17 2 GBI 3 Java S 3 L4 5 R G RO RO A T A , 48775 1 1
M, BRI 2, DA EREA RS T, (R R D,
R b N R UA TR . AN SR T B, JRl R R — AT B, A5
F AT, HRITENE, PERREAN, FTTERHOARA ARIZ %R,

Original edition, entitled Effective Java, 2E, 9780321356680 by Joshua Bloch, published by Pearson Education,
Inc., publishing as Addison-Wesley, Copyright © 2008 Sun Microsystems,Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

A e B ER & A AL i Pearson Education B R RO N A PR 2 w142 T 7 ol Rl
. kMR EF @A, A ELMER A H S AR .

A (R EAEEN (RSP E AR, BRI TER X Ah E e Ehx) #HERT.
A 45 930 B EI RN A Pearson Education Bk 207 ISR HBOLES thbn%, Tohn%E & A1,

MU 5 A id S Bl5: 01-2015-6096

BRERRE (CP) X8

Effective Java: 5 2. #53¢/ (%) Aii&#k (Bloch).) . —dbst: 7 Tk Hikkit, 2016.4
(AR R)
ISBN 978-7-121-27314-8

L DE-IL @ fi-- 1L @ JAVA i# % — Bkt — 33 v. @© TP312
o [E] A [457 CIP Sl (2015) 55 233695 5

T sk %
Bl Rl =WidEe DENEARAE
E iT: =& DINEARA
AR & AT : B Tl H e
JeaiHEX H AR 173 (55 #B%. 100036
FF A 787x9801/16 Efgk. 225 . 432 FF
hi R 2016 4 4 A5 1 IR
Bl k. 2016 4R 4 A% 1 ikENK
7E #r: 65.00 7T

JL AT i, - Tl B B A5 A e R R, 1 1o S A5 R TR A . 7 5 i ik, HEAHETHKR,
¥ Z Bpig e ig . (010) 88254888,

TR AL R & B % zlts@phei.com.cn, ¥EMURALESRIE MBS dbgg@phei.com.cn,

A4k, (010) 88258888,

T

WA R FE X R UE, “Spouse of me this night today manufactures the unusual meal in a
home. You will join?” X BHEARIN B o] fESTEELE =115 RISEESIHRS IR K E
HRE, Bl AR R AL R R BRI, T 20 A0 DU S w6 Al 1) BERR

WURAREG 222) 8 Al JF B DR 2 AME X FE 5, IREIZHE A
=P R AR A X1 1A S MESF AT (55) |« i dr 2 R AERie i CIRlic) |
ALK ey AT AR 28 7 SR8 H R i) (R) o 7EiRaE bR 2 H R 30 iy 9 451,
AR S AR AR X B AR B B, 3 2 R B S AR I 2R AR ANAE

BB RS W PR RS S G BRI SRR, R T] pRAL

SR [0 0 R PR EEAIE LR ARiESR AR T PSR 45 . BRAE AT BRI
(Facility) 7 A3 75 B2 R0 AR a] FFT 23 15 0 o 2050 0 5 XK AR A CAD . o a7 J2 181y i T 794 o L
WESHS, BT R RHE S AR 5 R MOX P, 3l HOR 0 8E K i A
A— N AR S A B A A0RRPE, (EUR I Bk 7 X 1038 35 R
FHIE

FIan, Java BFFRHHE S —] SRR R AR T R X R FBOHES . RN
WEB, B4R (THmERE), Statement-Oriented) HbS XM . Java FEFEHEAE T %
PR RS, iR et i i, (B2, nfde s & D tny o 6E
I SE R e

FAT— i, B 5 0k TR SR B AR R , & 2 ha e RS T
KA, UGS H BEREA R TAE I ELRESS BOM A B CRD T R A 1, FRATTIE
B H LN 5 T BIE . FIXEREAMESS nTRESA 10 FiUA R M 4ah ik, TifEIX
10 R I, A 7 Fhdmid T 2R AR A | IR B R E LA AR 1Y . TITER] A4 3 Fh
T, W BT A 55 B R — AR BERATRRAS B AR e 7

A R A 1S iT AR > Java FRIFIROTHE F 01, 45 The Java Programming
Language [Arnold05] (fF # Arnold. Gosling #l Holmes) , LA K& The Java Language
Specification [JIS] (YE# Gosling. Joy fl Bracha) . [#EHL, 5 Java FERFIRTHE 5 A A
RN APL G BRELATRZ

AR T RAEOSE = RhTR, BIGNar USRS 20 2Ok TS B S () .
ZAEK, YE# Joshua Bloch £ Sun Microsystems 23 Al — ELNEF Java 15 5 099 J& . SCBLANE
AR il A i B e T HAL AR, GG . A4l 71 2R 41
Hi, ARG L IR SRR, B TR SR o) S AT st 1 AR AR S AT TRE T4

x EAR
EAT, E T A A RS AR SRS, T LA A X AR A AT A6 e A 2 T
2P, BB, RITEF A E LA E A AL, BN e FHEE .
Guy L. Steele Jr.

Burlington, Massachusetts
2001 44 A

..ﬁLﬁ—\—

il

T 2001 4G TABRHE—MZIE, Java FHXELETIREZEM, FLURZESE R
HORHEE T o Java 5 Rk BB A AR (LRI I T2 A . B TR . A EhAAR A for-each
PEER . RIS SR TR IE R JE% . javautil.concurrent, JfELTE Java 5 HEAT 1 A, FA
Gilad Bracha —if2, A=4r S BN T ol & Rk, @& 1 sat MFEOF R LR
FBA, X~ HIBAH Doug Lea 4015

Java ¥ & 5 — KBy 2k 7T 2 & 7T 8AM IDE (Integrated Development
Environment) , 1] {1 Eclipse . Intelli] IDEA FIl NetBeans, VLM FA 408 T B4 IDE,
FindBugs. MARKAS Gx#h0 T, (HEEMNPZaHET, JFEHAREREENTR Java &
ENSEG gif A e

2004 4F, F&M Sun A EIHE] T Google 28w, {HAEIL 20 4 Frh, RAVALRLEEZ S Java
VERIT A, fE Google NGRSl JCP (Java Community Process) IR I EE BT, #ReE3F &M
45 AP I K . FRIEA FERH Java 5 2 A M Google PIFME HIZERE, IAEFR T T
Ve —2 P sz,

IRAE 2001 FFR G H—RRIBHE, FEEMRESEEPZERWORE, LIETERZ0M %5
FrEid (S, WINRFEE RS L m . 5 RRAA K ERIR A Java PG XRFERH
.

S — R O I B g e A i 1 SRR R A U . FRAE AR T A BT B BB LA AS A5 R 15
Oy, RO REMLOREE T ORI B, ZI0EEN, APNREREESm, Ns1 M REER
JEF) T 78 4~ AU T 23 N4 H, RGBT ECRIITA TR, Ji X T 2%
A H . TEREET, URAT LA BIAAS A A — MU A R BRI O

TES — R AT 5, Feibiad: Java FRIFIETIHE 5 AIE RIEAEH A 2 T AR5 B & AR
RIS, #ﬂff??fﬂqjava i&f?é’ﬁﬁglf&ﬁéﬂ'%@;ljava 5 Fl Java 6 RATHA AR L S -3,
WALFE Java F-£5 H#E5EH . BUEX D EG I 2001 FEFERTG L, WEHRIGL, HE -HE
8 Tl AR R U R, NS R AR R e e, AR TAR R E
Eepy . IRA A RGBSR BLIE FERT Java P S RFEERIIANS , PR XIS IE S IR, D
SR e SR R Al Java V- R R R

San Jose, California
2008 44 A

2| = e xi
B e e xiii
1 Introduction............cccouun.... &% BAE B4F 0 b N |
2 Creating and Destroying Objects. R cuE EmY B 5

Item 1: Consider static factory methods instead of constructors. . . 5
Item 2: Consider a builder when faced with many constructor

PAFATNCIELS .« 5 6u5m 6 5 4 5566855955885 smmmnssmmemnsne 11
Item 3: Enforce the singleton property with a private
CONStructor or an eNUM tYPeo vvvennenenn.n. 17
Item 4: Enforce noninstantiability with a private constructor. ... 19
Item 5: Avoid creating unnecessary objects 20
Item 6: Eliminate obsolete object references. 24
Item 7: Avoid finalizers................................. 27
3 Methods Common to All Objects.......... SYRRTIL .)
Item 8: Obey the general contract when overriding equals 33
Item 9: Always override hashCode when you
override equals., 45
Item 10: Always override toString..............couuunn... 51
Item 11: Override clone judiciously. 54

Item 12: Consider implementing Comparable 62

vi

B %

4 Classes and Interfaces.............. L T 67
Item 13: Minimize the accessibility of classes and members. 67
Item 14: In public classes, use accessor methods,

not public fields il 71
Item 15: Minimize mutability i 73
Item 16: Favor composition over inheritance. g1

Item 17: Design and document for inheritance or else prohibit it . .87

Item 18: Prefer interfaces to abstract classes 93
Item 19: Use interfaces only to define types. 98
Item 20: Prefer class hierarchies to tagged classes............. 100
Item 21: Use function objects to represent strategies 103
Item 22: Favor static member classes over nonstatic 106
Generics K G K S s R RO 109
Item 23: Don’t use raw types innew code 109
Item 24: Eliminate unchecked warnings. 116
Item 25: Prefer lists to arraysoveneeiiieannn. 119
Item 26: Favor generic types. oov it ieennaeanns 124
Item 27: Favor genericmethodst 129
Item 28: Use bounded wildcards to increase API flexibility 134
[tem 29: Consider typesafe heterogeneous containers 142
Enums and Annotationsccvveeeeececcen .. 147
Item 30: Use enums instead of int constants. 147
Item 31: Use instance fields instead of ordinals 158
Item 32: Use EnumSet instead of bit fields. 159
Item 33: Use EnumMap instead of ordinal indexing............. 161
Item 34: Emulate extensible enums with interfaces 165
Item 35: Prefer annotations to naming patterns 169
Item 36: Consistently use the Override annotation. 176
Item 37: Use marker interfaces to define types 179
Methods R cessessssssssersas 181
Item 38: Check parameters for validity 181
Item 39: Make defensive copies whenneeded 184
Item 40: Design method signatures carefully 189

Item 41: Use overloading judiciously....................... 191

Bx vii

Item 42: Use varargs judiciouslycovinan. 197
Item 43: Return empty arrays or collections, notnulls 201
Item 44: Write doc comments for all exposed API elements 203
8 General Programmingco0nnen e 209
[tem 45: Minimize the scope of local variables. 209
Item 46: Prefer for-each loops to traditional for loops. 212
Item 47: Know and use the libraries 215
Item 48: Avoid float and double if exact answers
AR TBUITed . . ones i vuvnnassssim s anmps e rTwm sy 218
Item 49: Prefer primitive types to boxed primitives 221
Item 50: Avoid strings where other types are more appropriate . . 224
Item 51: Beware the performance of string concatenation 227
Item 52: Refer to objects by their interfaces 228
Item 53: Prefer interfaces toreflection 230
Item 54: Use native methods judiciously. 233
Item 55: Optimize judiciouslyot 234
Item 56: Adhere to generally accepted naming conventions. 237
9 Exceptions Ceeeiesceeeeeas . pms mE € b 241
Item 57: Use exceptions only for exceptional conditions 241
Item 58: Use checked exceptions for recoverable conditions
and runtime exceptions for programming errors. 244
Item 59: Avoid unnecessary use of checked exceptions 246
Item 60: Favor the use of standard exceptions. 248
Item 61: Throw exceptions appropriate to the abstraction. 250
Item 62: Document all exceptions thrown by each method. 252
Item 63: Include failure-capture information in
detail MESSAZESo vvt e 254
Item 64: Strive for failure atomicity 256
Item 65: Don’t ignore eXceptionsc.cuvuenenns 258
10 Concurrency.......... . S 259
Item 66: Synchronize access to shared mutable data. 259
Item 67: Avoid excessive synchronization 265
Item 68: Prefer executors and tasks tothreads. 271

Item 69: Prefer concurrency utilities towait and notify....... 273

viil

B &

Item 70: Document thread safety 278
Item 71: Use lazy initialization judiciously 282
Item 72: Don’t depend on the thread scheduler 286
Item 73: Avoid thread groups.o 288
11 Serialization.......... cevessuossennnesnasatss 289
Item 74: Implement Serializable judiciously............... 289
Item 75: Consider using a custom serialized form 295
Item 76; Write readObject methods defensively 302
Item 77: For instance control, prefer enum types
10 rERAROSBTVE c s s s wusnsovwxmme s pavm o n mwmmn s 308
Item 78: Consider serialization proxies instead of serialized
TNSEANCES .+« v vt v vt m e e e e 312
Appendix: Items Corresponding to First Edition...... 317
References......... e T R L LAY P 74|

Indexo00ve S BT B € D6 N . 1.7

CHAPTER 1

Introduction

THIS book is designed to help you make the most effective use of the Java™
programming language and its fundamental libraries, java.lang, java.util,
and, to a lesser extent, java.util.concurrent and java.io. The book discusses
other libraries from time to time, but it does not cover graphical user interface
programming, enterprise APIs, or mobile devices.

This book consists of seventy-eight items, each of which conveys one rule.
The rules capture practices generally held to be beneficial by the best and most
experienced programmers. The items are loosely grouped into ten chapters, each
concerning one broad aspect of software design. The book is not intended to be
read from cover to cover: each item stands on its own, more or less. The items are
heavily cross-referenced so you can easily plot your own course through the book.

Many new features were added to the platform in Java 5 (release 1.5). Most of
the items in this book use these features in some way. The following table shows
you where to go for primary coverage of these features:

Feature Chapter or Item

Generics Chapter 5

Enums Items 30-34

Annotations Items 35-37

For-each loop Item 46

Autoboxing Ttems 40, 49

Varargs Item 42

Static import Item 19
java.util.concurrent Items 68, 69

CHAPTER 1 INTRODUCTION

Most items are illustrated with program examples. A key feature of this book
is that it contains code examples illustrating many design patterns and idioms.
Where appropriate, they are cross-referenced to the standard reference work in
this area [Gamma95].

Many items contain one or more program examples illustrating some practice
to be avoided. Such examples, sometimes known as antipatterns, are clearly
labeled with a comment such as “// Never do this!” In each case, the item
explains why the example is bad and suggests an alternative approach.

This book is not for beginners: it assumes that you are already comfortable
with the Java programming language. If you are not, consider one of the many fine
introductory texts [Arnold05, Sestoft05]. While the book is designed to be acces-
sible to anyone with a working knowledge of the language, it should provide food
for thought even for advanced programmers.

Most of the rules in this book derive from a few fundamental principles. Clar-
ity and simplicity are of paramount importance. The user of a module should
never be surprised by its behavior. Modules should be as small as possible but no
smaller. (As used in this book, the term module refers to any reusable software
component, from an individual method to a complex system consisting of multiple
packages.) Code should be reused rather than copied. The dependencies between
modules should be kept to a minimum. Errors should be detected as soon as possi-
ble after they are made, ideally at compile time.

While the rules in this book do not apply 100 percent of the time, they do
characterize best programming practices in the great majority of cases. You
should not slavishly follow these rules, but violate them only occasionally and
with good reason. Learning the art of programming, like most other disciplines,
consists of first learning the rules and then learning when to break them.

For the most part, this book is not about performance. It is about writing pro-
grams that are clear, correct, usable, robust, flexible, and maintainable. If you can
do that, it’s usually a relatively simple matter to get the performance you need
(Item 55). Some items do discuss performance concerns, and a few of these items
provide performance numbers. These numbers, which are introduced with the
phrase “On my machine,” should be regarded as approximate at best.

For what it’s worth, my machine is an aging homebuilt 2.2 GHz dual-core
AMD Opteron™ 170 with 2 gigabytes of RAM, running Sun’s 1.6_05 release of
the Java SE Development Kit (JDK) atop Microsoft Windows® XP Professional
SP2. This JDK has two virtual machines, the Java HotSpot™ Client and Server
VMs. Performance numbers were measured on the Server VM.

CHAPTER 1 INTRODUCTION

When discussing features of the Java programming language and its libraries,
it is sometimes necessary to refer to specific releases. For brevity, this book uses
“engineering version numbers” in preference to official release names. This table
shows the mapping between release names and engineering version numbers.

Official Release Name Engineering Version Number
JDK 1.1.x/JRE 1.1.x 1.1
Java 2 Platform, Standard Edition, v 1.2 1.2
Java 2 Platform, Standard Edition, v 1.3 1.3
Java 2 Platform, Standard Edition, v 1.4 1.4
Java 2 Platform, Standard Edition, v 5.0 1.5
Java Platform, Standard Edition 6 1.6

The examples are reasonably complete, but they favor readability over com-
pleteness. They freely use classes from the packages java.util and java.io. In
order to compile the examples, you may have to add one or more of these import
statements:

import java.util.=;
import java.util.concurrent.=x;
import java.io.x;

Other boilerplate is similarly omitted. The book’s Web site, http://
java.sun.com/docs/books/effective, contains an expanded version of each
example, which you can compile and run.

For the most part, this book uses technical terms as they are defined in The
Java Language Specification, Third Edition [JLS]. A few terms deserve special
mention. The language supports four kinds of types: interfaces (including annota-
tions), classes (including enums), arrays, and primitives. The first three are known
as reference types. Class instances and arrays are objects; primitive values are not.
A class’s members consist of its fields, methods, member classes, and member
interfaces. A method’s signature consists of its name and the types of its formal
parameters; the signature does not include the method’s return type.

This book uses a few terms differently from the The Java Language Specifica-
tion. Unlike The Java Language Specification, this book uses inheritance as a syn-
onym for subclassing. Instead of using the term inheritance for interfaces, this

CHAPTER I INTRODUCTION

book simply states that a class implements an interface or that one interface
extends another. To describe the access level that applies when none is specified,
this book uses the descriptive term package-private instead of the technically cor-
rect term default access [JLS, 6.6.1].

This book uses a few technical terms that are not defined in The Java Lan-
guage Specification. The term exported API, or simply API, refers to the classes,
interfaces, constructors, members, and serialized forms by which a programmer
accesses a class, interface, or package. (The term AP/, which is short for applica-
tion programming interface, is used in preference to the otherwise preferable term
interface to avoid confusion with the language construct of that name.) A pro-
grammer who writes a program that uses an API is referred to as a user of the APL
A class whose implementation uses an API is a client of the API.

Classes, interfaces, constructors, members, and serialized forms are collec-
tively known as API elements. An exported API consists of the API elements that
are accessible outside of the package that defines the API. These are the API ele-
ments that any client can use and the author of the APl commits to support. Not
coincidentally, they are also the elements for which the Javadoc utility generates
documentation in its default mode of operation. Loosely speaking, the exported
API of a package consists of the public and protected members and constructors
of every public class or interface in the package.

CHAPTER 2

i o
i iji B

Creating and Destroying Objects

THIS chapter concerns creating and destroying objects: when and how to create
them, when and how to avoid creating them, how to ensure they are destroyed in a
timely manner, and how to manage any cleanup actions that must precede their
destruction.

Item 1: Consider static factory methods instead of constructors

The normal way for a class to allow a client to obtain an instance of itself is to pro-
vide a public constructor. There is another technique that should be a part of every
programmer’s toolkit. A class can provide a public static factory method, which is
simply a static method that returns an instance of the class. Here’s a simple exam-
ple from Boolean (the boxed primitive class for the primitive type boolean). This
method translates a boolean primitive value into a Boolean object reference:

public static Boolean valueOf(boolean b) {
return b ? Boolean.TRUE : Boolean.FALSE;
}

Note that a static factory method is not the same as the Factory Method pattern
from Design Patterns [Gamma95, p. 107]. The static factory method described in
this item has no direct equivalent in Design Patterns.

A class can provide its clients with static factory methods instead of, or in
addition to, constructors. Providing a static factory method instead of a public
constructor has both advantages and disadvantages.

One advantage of static factory methods is that, unlike constructors, they
have names. If the parameters to a constructor do not, in and of themselves,
describe the object being returned, a static factory with a well-chosen name is eas-
ier to use and the resulting client code easier to read. For example, the constructor

CHAPTER 2 CREATING AND DESTROYING OBJECTS

BigInteger(int, int, Random), which returns a BigInteger that is probably
prime, would have been better expressed as a static factory method named BigIn-
teger.probablePrime. (This method was eventually added in release 1.4.)

A class can have only a single constructor with a given signature. Program-
mers have been known to get around this restriction by providing two constructors
whose parameter lists differ only in the order of their parameter types. This is a
really bad idea. The user of such an API will never be able to remember which
constructor is which and will end up calling the wrong one by mistake. People
reading code that uses these constructors will not know what the code does with-
out referring to the class documentation.

Because they have names, static factory methods don’t share the restriction
discussed in the previous paragraph. In cases where a class seems to require multi-
ple constructors with the same signature, replace the constructors with static fac-
tory methods and carefully chosen names to highlight their differences.

A second advantage of static factory methods is that, unlike constructors,
they are not required to create a new object each time they’re invoked. This
allows immutable classes (Item 15) to use preconstructed instances, or to cache
instances as they’re constructed, and dispense them repeatedly to avoid creating
unnecessary duplicate objects. The Boolean.valueOf(boolean) method illus-
trates this technique: it never creates an object. This technique is similar to the
Flyweight pattern [Gamma95, p. 195]. It can greatly improve performance if
equivalent objects are requested often, especially if they are expensive to create.

The ability of static factory methods to return the same object from repeated
invocations allows classes to maintain strict control over what instances exist at
any time. Classes that do this are said to be instance-controlled. There are several
reasons to write instance-controlled classes. Instance control allows a class to
guarantee that it is a singleton (Item 3) or noninstantiable (Item 4). Also, it allows
an immutable class (Item 15) to make the guarantee that no two equal instances
exist: a.equals(b) if and only if a==b. If a class makes this guarantee, then its cli-
ents can use the == operator instead of the equals(Object) method, which may
result in improved performance. Enum types (Item 30) provide this guarantee.

A third advantage of static factory methods is that, unlike constructors,
they can return an object of any subtype of their return type. This gives you
great flexibility in choosing the class of the returned object.

One application of this flexibility is that an API can return objects without
making their classes public. Hiding implementation classes in this fashion leads to
a very compact API. This technique lends itself to interface-based frameworks
(Item 18), where interfaces provide natural return types for static factory methods.

ITEM 1: CONSIDER STATIC FACTORY METHODS INSTEAD OF CONSTRUCTORS

Interfaces can’t have static methods, so by convention, static factory methods for
an interface named Type are put in a noninstantiable class (Item 4) named Types.

For example, the Java Collections Framework has thirty-two convenience
implementations of its collection interfaces, providing unmodifiable collections,
synchronized collections, and the like. Nearly all of these implementations are
exported via static factory methods in one noninstantiable class (java.util.Col-
Tections). The classes of the returned objects are all nonpublic.

The Collections Framework API is much smaller than it would have been had
it exported thirty-two separate public classes, one for each convenience imple-
mentation. It is not just the bulk of the API that is reduced, but the conceptual
weight. The user knows that the returned object has precisely the API specified by
its interface, so there is no need to read additional class documentation for the
implementation classes. Furthermore, using such a static factory method requires
the client to refer to the returned object by its interface rather than its implementa-
tion class, which is generally good practice (Item 52).

Not only can the class of an object returned by a public static factory method
be nonpublic, but the class can vary from invocation to invocation depending on
the values of the parameters to the static factory. Any class that is a subtype of the
declared return type is permissible. The class of the returned object can also vary
from release to release for enhanced software maintainability and performance.

The class java.util.EnumSet (Item 32), introduced in release 1.5, has no
public constructors, only static factories. They return one of two implementations,
depending on the size of the underlying enum type: if it has sixty-four or fewer
elements, as most enum types do, the static factories return a RegularEnumSet
instance, which is backed by a single Tong; if the enum type has sixty-five or more
elements, the factories return a JumboEnumSet instance, backed by a Tong array.

The existence of these two implementation classes is invisible to clients. If
RegularEnumSet ceased to offer performance advantages for small enum types, it
could be eliminated from a future release with no ill effects. Similarly, a future
release could add a third or fourth implementation of EnumSet if it proved benefi-
cial for performance. Clients neither know nor care about the class of the object
they get back from the factory; they care only that it is some subclass of EnumSet.

The class of the object returned by a static factory method need not even exist
at the time the class containing the method 1s written. Such flexible static factory
methods form the basis of service provider frameworks, such as the Java Database
Connectivity API (JDBC). A service provider framework is a system in which
multiple service providers implement a service, and the system makes the imple-
mentations available to its clients, decoupling them from the implementations.

