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CHAPTER 1

Introduction

THIS book is designed to help you make the most effective use of the Java™
programming language and its fundamental libraries, java.lang, java.util,
and, to a lesser extent, java.util.concurrent and java.io. The book discusses
other libraries from time to time, but it does not cover graphical user interface
programming, enterprise APIs, or mobile devices.

This book consists of seventy-eight items, each of which conveys one rule.
The rules capture practices generally held to be beneficial by the best and most
experienced programmers. The items are loosely grouped into ten chapters, each
concerning one broad aspect of software design. The book is not intended to be
read from cover to cover: each item stands on its own, more or less. The items are
heavily cross-referenced so you can easily plot your own course through the book.

Many new features were added to the platform in Java 5 (release 1.5). Most of
the items in this book use these features in some way. The following table shows
you where to go for primary coverage of these features:

Feature Chapter or Item

Generics Chapter 5

Enums Items 30-34

Annotations Items 35-37

For-each loop Item 46

Autoboxing Ttems 40, 49

Varargs Item 42

Static import Item 19
java.util.concurrent Items 68, 69
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Most items are illustrated with program examples. A key feature of this book
is that it contains code examples illustrating many design patterns and idioms.
Where appropriate, they are cross-referenced to the standard reference work in
this area [Gamma95].

Many items contain one or more program examples illustrating some practice
to be avoided. Such examples, sometimes known as antipatterns, are clearly
labeled with a comment such as “// Never do this!” In each case, the item
explains why the example is bad and suggests an alternative approach.

This book is not for beginners: it assumes that you are already comfortable
with the Java programming language. If you are not, consider one of the many fine
introductory texts [Arnold05, Sestoft05]. While the book is designed to be acces-
sible to anyone with a working knowledge of the language, it should provide food
for thought even for advanced programmers.

Most of the rules in this book derive from a few fundamental principles. Clar-
ity and simplicity are of paramount importance. The user of a module should
never be surprised by its behavior. Modules should be as small as possible but no
smaller. (As used in this book, the term module refers to any reusable software
component, from an individual method to a complex system consisting of multiple
packages.) Code should be reused rather than copied. The dependencies between
modules should be kept to a minimum. Errors should be detected as soon as possi-
ble after they are made, ideally at compile time.

While the rules in this book do not apply 100 percent of the time, they do
characterize best programming practices in the great majority of cases. You
should not slavishly follow these rules, but violate them only occasionally and
with good reason. Learning the art of programming, like most other disciplines,
consists of first learning the rules and then learning when to break them.

For the most part, this book is not about performance. It is about writing pro-
grams that are clear, correct, usable, robust, flexible, and maintainable. If you can
do that, it’s usually a relatively simple matter to get the performance you need
(Item 55). Some items do discuss performance concerns, and a few of these items
provide performance numbers. These numbers, which are introduced with the
phrase “On my machine,” should be regarded as approximate at best.

For what it’s worth, my machine is an aging homebuilt 2.2 GHz dual-core
AMD Opteron™ 170 with 2 gigabytes of RAM, running Sun’s 1.6_05 release of
the Java SE Development Kit (JDK) atop Microsoft Windows® XP Professional
SP2. This JDK has two virtual machines, the Java HotSpot™ Client and Server
VMs. Performance numbers were measured on the Server VM.
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When discussing features of the Java programming language and its libraries,
it is sometimes necessary to refer to specific releases. For brevity, this book uses
“engineering version numbers” in preference to official release names. This table
shows the mapping between release names and engineering version numbers.

Official Release Name Engineering Version Number
JDK 1.1.x/JRE 1.1.x 1.1
Java 2 Platform, Standard Edition, v 1.2 1.2
Java 2 Platform, Standard Edition, v 1.3 1.3
Java 2 Platform, Standard Edition, v 1.4 1.4
Java 2 Platform, Standard Edition, v 5.0 1.5
Java Platform, Standard Edition 6 1.6

The examples are reasonably complete, but they favor readability over com-
pleteness. They freely use classes from the packages java.util and java.io. In
order to compile the examples, you may have to add one or more of these import
statements:

import java.util.=;
import java.util.concurrent.=x;
import java.io.x;

Other boilerplate is similarly omitted. The book’s Web site, http://
java.sun.com/docs/books/effective, contains an expanded version of each
example, which you can compile and run.

For the most part, this book uses technical terms as they are defined in The
Java Language Specification, Third Edition [JLS]. A few terms deserve special
mention. The language supports four kinds of types: interfaces (including annota-
tions), classes (including enums), arrays, and primitives. The first three are known
as reference types. Class instances and arrays are objects; primitive values are not.
A class’s members consist of its fields, methods, member classes, and member
interfaces. A method’s signature consists of its name and the types of its formal
parameters; the signature does not include the method’s return type.

This book uses a few terms differently from the The Java Language Specifica-
tion. Unlike The Java Language Specification, this book uses inheritance as a syn-
onym for subclassing. Instead of using the term inheritance for interfaces, this
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book simply states that a class implements an interface or that one interface
extends another. To describe the access level that applies when none is specified,
this book uses the descriptive term package-private instead of the technically cor-
rect term default access [JLS, 6.6.1].

This book uses a few technical terms that are not defined in The Java Lan-
guage Specification. The term exported API, or simply API, refers to the classes,
interfaces, constructors, members, and serialized forms by which a programmer
accesses a class, interface, or package. (The term AP/, which is short for applica-
tion programming interface, is used in preference to the otherwise preferable term
interface to avoid confusion with the language construct of that name.) A pro-
grammer who writes a program that uses an API is referred to as a user of the APL
A class whose implementation uses an API is a client of the API.

Classes, interfaces, constructors, members, and serialized forms are collec-
tively known as API elements. An exported API consists of the API elements that
are accessible outside of the package that defines the API. These are the API ele-
ments that any client can use and the author of the APl commits to support. Not
coincidentally, they are also the elements for which the Javadoc utility generates
documentation in its default mode of operation. Loosely speaking, the exported
API of a package consists of the public and protected members and constructors
of every public class or interface in the package.
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Creating and Destroying Objects

THIS chapter concerns creating and destroying objects: when and how to create
them, when and how to avoid creating them, how to ensure they are destroyed in a
timely manner, and how to manage any cleanup actions that must precede their
destruction.

Item 1: Consider static factory methods instead of constructors

The normal way for a class to allow a client to obtain an instance of itself is to pro-
vide a public constructor. There is another technique that should be a part of every
programmer’s toolkit. A class can provide a public static factory method, which is
simply a static method that returns an instance of the class. Here’s a simple exam-
ple from Boolean (the boxed primitive class for the primitive type boolean). This
method translates a boolean primitive value into a Boolean object reference:

public static Boolean valueOf(boolean b) {
return b ? Boolean.TRUE : Boolean.FALSE;
}

Note that a static factory method is not the same as the Factory Method pattern
from Design Patterns [Gamma95, p. 107]. The static factory method described in
this item has no direct equivalent in Design Patterns.

A class can provide its clients with static factory methods instead of, or in
addition to, constructors. Providing a static factory method instead of a public
constructor has both advantages and disadvantages.

One advantage of static factory methods is that, unlike constructors, they
have names. If the parameters to a constructor do not, in and of themselves,
describe the object being returned, a static factory with a well-chosen name is eas-
ier to use and the resulting client code easier to read. For example, the constructor
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BigInteger(int, int, Random), which returns a BigInteger that is probably
prime, would have been better expressed as a static factory method named BigIn-
teger.probablePrime. (This method was eventually added in release 1.4.)

A class can have only a single constructor with a given signature. Program-
mers have been known to get around this restriction by providing two constructors
whose parameter lists differ only in the order of their parameter types. This is a
really bad idea. The user of such an API will never be able to remember which
constructor is which and will end up calling the wrong one by mistake. People
reading code that uses these constructors will not know what the code does with-
out referring to the class documentation.

Because they have names, static factory methods don’t share the restriction
discussed in the previous paragraph. In cases where a class seems to require multi-
ple constructors with the same signature, replace the constructors with static fac-
tory methods and carefully chosen names to highlight their differences.

A second advantage of static factory methods is that, unlike constructors,
they are not required to create a new object each time they’re invoked. This
allows immutable classes (Item 15) to use preconstructed instances, or to cache
instances as they’re constructed, and dispense them repeatedly to avoid creating
unnecessary duplicate objects. The Boolean.valueOf(boolean) method illus-
trates this technique: it never creates an object. This technique is similar to the
Flyweight pattern [Gamma95, p. 195]. It can greatly improve performance if
equivalent objects are requested often, especially if they are expensive to create.

The ability of static factory methods to return the same object from repeated
invocations allows classes to maintain strict control over what instances exist at
any time. Classes that do this are said to be instance-controlled. There are several
reasons to write instance-controlled classes. Instance control allows a class to
guarantee that it is a singleton (Item 3) or noninstantiable (Item 4). Also, it allows
an immutable class (Item 15) to make the guarantee that no two equal instances
exist: a.equals(b) if and only if a==b. If a class makes this guarantee, then its cli-
ents can use the == operator instead of the equals(Object) method, which may
result in improved performance. Enum types (Item 30) provide this guarantee.

A third advantage of static factory methods is that, unlike constructors,
they can return an object of any subtype of their return type. This gives you
great flexibility in choosing the class of the returned object.

One application of this flexibility is that an API can return objects without
making their classes public. Hiding implementation classes in this fashion leads to
a very compact API. This technique lends itself to interface-based frameworks
(Item 18), where interfaces provide natural return types for static factory methods.
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Interfaces can’t have static methods, so by convention, static factory methods for
an interface named Type are put in a noninstantiable class (Item 4) named Types.

For example, the Java Collections Framework has thirty-two convenience
implementations of its collection interfaces, providing unmodifiable collections,
synchronized collections, and the like. Nearly all of these implementations are
exported via static factory methods in one noninstantiable class (java.util.Col-
Tections). The classes of the returned objects are all nonpublic.

The Collections Framework API is much smaller than it would have been had
it exported thirty-two separate public classes, one for each convenience imple-
mentation. It is not just the bulk of the API that is reduced, but the conceptual
weight. The user knows that the returned object has precisely the API specified by
its interface, so there is no need to read additional class documentation for the
implementation classes. Furthermore, using such a static factory method requires
the client to refer to the returned object by its interface rather than its implementa-
tion class, which is generally good practice (Item 52).

Not only can the class of an object returned by a public static factory method
be nonpublic, but the class can vary from invocation to invocation depending on
the values of the parameters to the static factory. Any class that is a subtype of the
declared return type is permissible. The class of the returned object can also vary
from release to release for enhanced software maintainability and performance.

The class java.util.EnumSet (Item 32), introduced in release 1.5, has no
public constructors, only static factories. They return one of two implementations,
depending on the size of the underlying enum type: if it has sixty-four or fewer
elements, as most enum types do, the static factories return a RegularEnumSet
instance, which is backed by a single Tong; if the enum type has sixty-five or more
elements, the factories return a JumboEnumSet instance, backed by a Tong array.

The existence of these two implementation classes is invisible to clients. If
RegularEnumSet ceased to offer performance advantages for small enum types, it
could be eliminated from a future release with no ill effects. Similarly, a future
release could add a third or fourth implementation of EnumSet if it proved benefi-
cial for performance. Clients neither know nor care about the class of the object
they get back from the factory; they care only that it is some subclass of EnumSet.

The class of the object returned by a static factory method need not even exist
at the time the class containing the method 1s written. Such flexible static factory
methods form the basis of service provider frameworks, such as the Java Database
Connectivity API (JDBC). A service provider framework is a system in which
multiple service providers implement a service, and the system makes the imple-
mentations available to its clients, decoupling them from the implementations.



