The Higher
Arithmetic

Eighth Edition

BEEAR
F8hR

H. Davenport

The Higher Arithmetic

Z PR ¥k d)
www.wpcbj.com.cn




THE HIGHER
ARITHMETIC

AN INTRODUCTION TO
THE THEORY OF NUMBERS

Eighth edition

H. Davenport
M.A, SC.D,,ERSS.

late Rouse Ball Professor of Mathematics
in the University of Cambridge and
Fellow of Trinity College

Editing and additional material by
James H. Davenport

5 CAMBRIDGE
) UNIVERSITY PRESS




EHEMAME (CIP) &

BB AR, 4 8 L = The Higher Arithmetic Eighth Edition: #£30/(3£) ik CHHE
(Davenport, H.) #.—EIA . —dtat: HREBHEARILHAH, 201511
ISBN 978-7-5192-0531-7

.- 1.@ik- 1L $ig—kx V. QOIS

o (R o 7 T T CIP Mt A% 7 (2015) 46 287988 &

The Higher Arithmetic Eighth Edition
BEHEAR E8 W

= # . H. Davenport
BEHE: X B EHHE
JEMIZIT: Tz

HARR 1T A AR AL 2 7]

¢ AT AIRIX FI A KA 137 5

: 100010

. 010 -64038355 (&471) 64015580 (& fR) 64033507 (E4%i=)
: http: //www. wpebj. com. cn

: wpchjst@ vip. 163. com

: BAEAE

=i SEEN 5 A R A

: 711mm x 1245mm  1/24

; 10.5

: 202 F

: 2016 4E7 A5 1 AR 2016 =7 A5 1 WEIRI
: 01-2016-1330

ISBN 978-7-5192-0531-7 EfY: 45.00 o

FHIHSREIRESF
PN ER N IR B SRS

&
B
¢
&

WRALERE  EEN @R
(XA EREAM, wEAMERHEEHNKERAR)



Now into its eighth edition and with additional material on
primality testing, written by J. H. Davenport, The Higher
Arithmetic introduces concepts and theorems in a way that does
not require the reader to have an in-depth knowledge of the
theory of numbers but also touches upon matters of deep
mathematical significance. A companion website
(www.cambridge.org/davenport) provides more details of the
latest advances and sample code for important algorithms.

Reviews of earlier editions:

‘... the well-known and charming introduction to number theory . ..
can be recommended both for independent study and as a
reference text for a general mathematical audience.’
European Maths Society Journal

‘Although this book is not written as a textbook but rather as a
work for the general reader, it could certainly be used as a
textbook for an undergraduate course in number theory and, in
the reviewer’s opinion, is far superior for this purpose to any
other book in English.’

Bulletin of the American Mathematical Society
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INTRODUCTION

The higher arithmetic, or the theory of numbers, is concerned with the
properties of the natural numbers 1, 2, 3, .... These numbers must have
exercised human curiosity from a very early period; and in all the records
of ancient civilizations there is evidence of some preoccupation with arith-
metic over and above the needs of everyday life. But as a systematic and
independent science, the higher arithmetic is entirely a creation of modern
times, and can be said to date from the discoveries of Fermat (1601-1665).

A peculiarity of the higher arithmetic is the great difficulty which has
often been experienced in proving simple general theorems which had
been suggested quite naturally by numerical evidence. ‘It is just this,’ said
Gauss, ‘which gives the higher arithmetic that magical charm which has
made it the favourite science of the greatest mathematicians, not to men-
tion its inexhaustible wealth, wherein it so greatly surpasses other parts of
mathematics.’

The theory of numbers is generally considered to be the ‘purest’ branch
of pure mathematics. It certainly has very few direct applications to
other sciences, but it has one feature in common with them, namely the
inspiration which it derives from experiment, which takes the form of test-
ing possible general theorems by numerical examples. Such experiment,
though necessary in some form to progress in every part of mathematics,
has played a greater part in the development of the theory of numbers than
elsewhere; for in other branches of mathematics the evidence found in this
way is too often fragmentary and misleading.

As regards the present book, the author is well aware that it will not be
read without effort by those who are not, in some sense at least, mathe-
maticians. But the difficulty is partly that of the subject itself. It cannot be
evaded by using imperfect analogies, or by presenting the proofs in a way

viii



Introduction ix

which may convey the main idea of the argument, but is inaccurate in detail.
The theory of numbers is by its nature the most exact of all the sciences,
and demands exactness of thought and exposition from its devotees.

The theorems and their proofs are often illustrated by numerical exam-
ples. These are generally of a very simple kind, and may be despised by
those who enjoy numerical calculation. But the function of these examples
is solely to illustrate the general theory, and the question of how arithmeti-
cal calculations can most effectively be carried out is beyond the scope of
this book.

The author is indebted to many friends, and most of all to Professor
Erdés, Professor Mordell and Professor Rogers, for suggestions and cor-
rections. He is also indebted to Captain Draim for permission to include an
account of his algorithm.

The material for the fifth edition was prepared by Professor D. J. Lewis
and Dr J. H. Davenport. The problems and answers are based on the
suggestions of Professor R. K. Guy.

Chapter VIII and the associated exercises were written for the sixth edi-
tion by Professor J. H. Davenport. For the seventh edition, he updated
Chapter VII to mention Wiles’ proof of Fermat’s Last Theorem, and is
grateful to Professor J. H. Silverman for his comments.

For the eighth edition, many people contributed suggestions, notably
Dr J. E McKee and Dr G. K. Sankaran. Cambridge University Press
kindly re-typeset the book for the eighth edition, which has allowed a
few corrections and the preparation of an electronic complement: www .
cambridge.org/davenport. References to further material in the
electronic complement, when known at the time this book went to print, are
marked thus: #:0.
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FACTORIZATION AND THE PRIMES

1. The laws of arithmetic

The object of the higher arithmetic is to discover and to establish general
propositions concerning the natural numbers 1, 2, 3, ... of ordinary arith-
metic. Examples of such propositions are the fundamental theorem (1.4)*
that every natural number can be factorized into prime numbers in one
and only one way, and Lagrange’s theorem (V.4) that every natural num-
ber can be expressed as a sum of four or fewer perfect squares. We are not
concerned with numerical calculations, except as illustrative examples, nor
are we much concerned with numerical curiosities except where they are
relevant to general propositions.

We learn arithmetic experimentally in early childhood by playing with
objects such as beads or marbles. We first learn addition by combining two
sets of objects into a single set, and later we learn multiplication, in the form
of repeated addition. Gradually we learn how to calculate with numbers,
and we become familiar with the laws of arithmetic: laws which probably
carry more conviction to our minds than any other propositions in the whole
range of human knowledge.

The higher arithmetic is a deductive science, based on the laws of arith-
metic which we all know, though we may never have seen them formulated
in general terms. They can be expressed as follows.

* References in this form are to chapters and sections of chapters of this book.



2 The Higher Arithmetic

Addition. Any two natural numbers a and b have a sum, denoted by
a + b, which is itself a natural number. The operation of addition satisfies
the two laws:

a+b=b+a (commutative law of addition),
a+ (b+c)=(a+b)+c (associative law of addition),

the brackets in the last formula serving to indicate the way in which the
operations are carried out.

Multiplication. Any two natural numbers a and b have a product, denoted
by a x b or ab, which is itself a natural number. The operation of
multiplication satisfies the two laws

ab = ba (commutative law of multiplication),
a(bc) = (ab)c (associative law of multiplication).

There is also a law which involves operations both of addition and of
multiplication:

a(b+c) =ab +ac (the distributive law).

Order. If a and b are any two natural numbers, then either a is equal
to b or a is less than b or b is less than a, and of these three possibilities
exactly one must occur. The statement that a is less than b is expressed
symbolically by a < b, and when this is the case we also say that b is
greater than a, expressed by b > a. The fundamental law governing this
notion of order is that

if a<b and b<c then a<c.

There are also two other laws which connect the notion of order with the
operations of addition and multiplication. They are that

if a<b then a+c<b+c and ac < bc

for any natural number c.

Cancellation. There are two laws of cancellation which, though they
follow logically from the laws of order which have just been stated, are
important enough to be formulated explicitly. The first is that

if a+x=a+y then x=y.

This follows from the fact that if x < y thena + x < a + y, which is
contrary to the hypothesis, and similarly it is impossible that y < x, and
therefore x = y. In the same way we get the second law of cancellation,
which states that

if ax=ay then x=y.
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Subtraction. To subtract a number b from a number a means to find, if
possible, a number x such that b + x = a. The possibility of subtraction
is related to the notion of order by the law that b can be subtracted from a
if and only if b is less than a. It follows from the first cancellation law that
if subtraction is possible, the resulting number is unique; forif b +x = a
and b + y = a we get x = y. The result of subtracting b from a is denoted
by a — b. Rules for operating with the minus sign, suchasa — (b —¢) =
a — b + ¢, follow from the definition of subtraction and the commutative
and associative laws of addition.

Division. To divide a number a by a number b means to find, if possible,
a number x such that bx = a. If such a number exists it is denoted by § or
a/b. 1t follows from the second cancellation law that if division is possible
the resulting number is unique.

All the laws set out above become more or less obvious when one gives
addition and multiplication their primitive meanings as operations on sets
of objects. For example, the commutative law of multiplication becomes
obvious when one thinks of objects arranged in a rectangular pattern with
a rows and b columns (fig. 1); the total number of objects is ab and is also
ba. The distributive law becomes obvious when one considers the arrange-
ment of objects indicated in fig. 2; there are a(b + c) objects altogether
and these are made up of ab objects together with ac more objects. Rather
less obvious, perhaps, is the associative law of multiplication, which asserts
that a(bc) = (ab)c. To make this apparent, consider the same rectangle as
in fig. 1, but replace each object by the number ¢. Then the sum of all the
numbers in any one row is bc, and as there are a rows the total sum is a(bc).
On the other hand, there are altogether ab numbers each of which is ¢, and
therefore the total sum is (ab)c. It follows that a(bc) = (ab)c, as stated.

b b c
e et N —
- - . - . - - - . . .
a a
. . - L] e . . - L3 . -
Fig. 1 Fig. 2

The laws of arithmetic, supplemented by the principle of induction
(which we shall discuss in the next section), form the basis for the logi-
cal development of the theory of numbers. They allow us to prove general
theorems about the natural numbers without it being necessary to go back
to the primitive meanings of the numbers and of the operations carried out



4 The Higher Arithmetic

on them. Some quite advanced results in the theory of numbers, it is true,
are most easily proved by counting the same collection of things in two
different ways, but there are not very many such.

Although the laws of arithmetic form the logical basis for the theory of
numbers (as indeed they do for most of mathematics), it would be extremely
tedious to refer back to them for each step of every argument, and we shall
in fact assume that the reader already has some knowledge of elementary
mathematics. We have set out the laws in detail in order to show where the
subject really begins. i

We conclude this section by discussing briefly the relationship between
the system of natural numbers and two other number-systems that are
important in the higher arithmetic and in mathematics generally, namely
the system of all integers and the system of all rational numbers.

The operations of addition and multiplication can always be carried out,
but those of subtraction and division cannot always be carried out within the
natural number system. It is to overcome the limited possibility of subtrac-
tion that there have been introduced into mathematics the number 0 and the
negative integers —1, —2, .... These, together with the natural numbers,
form the system of all integers:

s 2= 15 O 120y«

within which subtraction is always possible, with a unique result. One
learns in elementary algebra how to define multiplication in this extended
number-system, by the ‘rule of signs’, in such a way that the laws of arith-
metic governing addition and multiplication remain valid. The notion of
order also extends in such a way that the laws governing it remain valid,
with one exception: the law that if @ < b then ac < bc remains true only
if ¢ is positive. This involves an alteration in the second cancellation law,
which is only true in the extended system if the factor cancelled is not 0:

if ax =ay then x =y, provided that a #0.

Thus the integers (positive, negative and zero) satisfy the same laws of
arithmetic as the natural numbers except that subtraction is now always pos-
sible, and that the law of order and the second cancellation law are modified
as just stated. The natural numbers can now be described as the positive
integers.

Let us return to the natural numbers. As we all know, it is not always
possible to divide one natural number by another, with a result which is
itself a natural number. If it is possible to divide a natural number b by a
natural number a within the system, we say that a is a factor or divisor of b,
or that b is a multiple of a. All these express the same thing. As illustrations
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of the definition, we note that 1 is a factor of every number, and that a is
itself a factor of a (the quotient being 1). As another illustration, we observe
that the numbers divisible by 2 are the even numbu;s 2,4, 6, ..., and those
not divisible by 2 are the odd numbers 1, 3,5, .. ..

The notion of divisibility is one that is peculiar to the theory of numbers,
and to a few other branches of mathematics that are closely related to the
theory of numbers. In this first chapter we shall consider various questions
concerning divisibility which arise directly out of the definition. For the
moment, we merely note a few obvious facts.

(i) If a divides b then a < b (that is, a is either less than or equal to b).
For b = ax,sothatb —a = a(x — 1), and here x — 1 is either O or a
natural number.

(i1) Ifa divides b and b divides c then a divides c. For b = ax and ¢ = by,
whence ¢ = a(xy), where x and y denote natural numbers.

(iii) If two numbers b and c are both divisible by a, then b + c and b — ¢
(if ¢ < b) are also divisible by a. For b = ax and ¢ = ay, whence

b+c=a(x+y)andb—c=a(x —y).

There is no need to impose the restriction that » > ¢ when consider-
ing b — c in the last proposition, if we extend the notion of divisibility
to the integers as a whole in the obvious way: an integer b is said to be
divisible by a natural number a if the quotient % is an integer. Thus a
negative integer —b is divisible by a if and only if b is divisible by a.
Note that 0 is divisible by every natural number, since the quotient is
the integer 0.

(iv) Iftwo integers b and c are both divisible by the natural number a, then
every integer that is expressible in the form ub + vc, where u and v
are integers, is also divisible by a. For b = ax and ¢ = ay, whence
ub + vc = (ux + vy)a. This result includes those stated in (iii) as
special cases; if we take u and v to be 1 we get b + ¢, and if we take u
tobe 1 and vtobe —1 we getb — c.

Just as the limitation on the possibility of subtraction can be removed
by enlarging the natural number system through the introduction of 0 and
the negative integers, so also the limitation on the possibility of division
can be removed by enlarging the natural number system through the intro-
duction of all positive fractions, that is, all fractions 7, where a and b
are natural numbers. If both methods of extension are combined, we get
the system of rational numbers, comprising all integers and all fractions,

both positive and negative. In this system of numbers, all four operations
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of arithmetic—addition, multiplication, subtraction and division—can be
carried out without limitation, except that division by zero is necessarily
excluded.

The main concern of the theory of numbers is with the natural num-
bers. But it is often convenient to work in the system of all integers or in
the system of rational numbers. It is, of course, important that the reader,
when following any particular train of reasoning, should note carefully
what kinds of numbers are represented by the various symbols.

2. Proof by induction

Most of the propositions of the theory of numbers make some assertion
about every natural number; for example Lagrange’s theorem asserts that
every natural number is representable as the sum of at most four squares.
How can we prove that an assertion is true for every natural number?
There are, of course, some assertions that follow directly from the laws of
arithmetic, as for instance algebraic identities like

n+D2=n +2n+1.

But the more interesting and more genuinely arithmetical propositions are
not of this simple kind.

It is plain that we can never prove a general proposition by verifying that
it is true when the number in question is 1 or 2 or 3, and so on, because
we cannot carry out infinitely many verifications. Even if we verify that a
proposition is true for every number up to a million, or a million million,
we are no nearer to establishing that it is true always. In fact it has some-
times happened that propositions in the theory of numbers, suggested by
extensive numerical evidence, have proved to be wide of the truth.

It may be, however, that we can find a general argument by which we
can prove that if the proposition in question is true for all the numbers

1,2,3,..5,n—1,

then it is true for the next number, n. If we have such an argument, then the
fact that the proposition is true for the number 1 will imply that it is true
for the next number, 2; and then the fact that it is true for the numbers 1
and 2 will imply that it is true for the number 3, and so on indefinitely. The
proposition will therefore be true for every natural number if it is true for
the number 1.

This is the principle of proof by induction. The principle relates to propo-
sitions which assert that something is true for every natural number, and
in order to apply the principle we need to prove two things: first, that the
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assertion in question is true for the number 1, and secondly that if the asser-
tion is true for each of the numbers 1, 2, 3, ..., n— 1 preceding any number
n, then it is true for the number ». Under these circumstances we conclude
that the proposition is true for every natural number.

A simple example will illustrate the principle. Suppose we examine the
sum 1 +3 + 5 + - of the successive odd numbers, up to any particular
one. We may notice that

1=12,143=221434+5=3214+3+5+7=42,

and so on. This suggests the general proposition that for every natural num-
ber n, the sum of the first n odd numbers is n?. Let us prove this general
proposition by induction. It is certainly true when n is 1. Now we have to
prove that the result is true for any number 7, and by the principle of induc-
tion we are entitled to suppose that it is already known to be true for any
number less than n. In particular, therefore, we are entitled to suppose that
we already know that the sum of the first n — 1 odd numbers is (n — 1)2.
The sum of the first » odd numbers is obtained from this by adding the nth
odd number, which is 2n — 1. So the sum of the first n odd numbers is

(n—12+Q@2n—1),

which is in fact n2. This proves the proposition generally.

Proofs by induction are sometimes puzzling to the inexperienced, who
are liable to complain that ‘you are assuming the proposition that is to be
proved’. The fact is, of course, that a proposition of the kind now under
consideration is a proposition with an infinity of cases, one for each of the
natural numbers 1, 2, 3, .. .; and all that the principle of induction allows
us to do is to suppose, when proving any one case, that the preceding cases
have already been settled.

Some care is called for in expressing a proof by induction in a form
which will not cause confusion. In the example above, the proposition in
question was that the sum of the first n odd numbers is n*. Here n is any one
of the natural numbers, and, of course, the statement means just the same
if we change » into any other symbol, provided we use the same symbol in
the two places where it occurs. But once we have embarked on the proof, n
becomes a particular number, and we are then in danger of using the same
symbol in two senses, and even of writing such nonsense as ‘the proposition
is true when n is n — 1”. The proper course is to use different symbols where
necessary.

From a commonsense point of view, nothing can be more obvious than
the validity of proof by induction. Nevertheless it is possible to debate
whether the principle is in the nature of a definition or a postulate or an act



