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Preface

This book has its roots in a course I taught for many years at the University of
Paris. It is intended for students who have a good background in real analysis (as
expounded, for instance, in the textbooks of G. B. Folland [2], A. W. Knapp [1],
and H. L. Royden [1]). I conceived a program mixing elements from two distinct
“worlds”: functional analysis (FA) and partial differential equations (PDEs). The first
part deals with abstract results in FA and operator theory. The second part concerns
the study of spaces of functions (of one or more real variables) having specific
differentiability properties: the celebrated Sobolev spaces, which lie at the heart of
the modern theory of PDEs. I show how the abstract results from FA can be applied
to solve PDEs. The Sobolev spaces occur in a wide range of questions, in both pure
and applied mathematics. They appear in linear and nonlinear PDEs that arise, for
example, in differential geometry, harmonic analysis, engineering, mechanics, and
physics. They belong to the toolbox of any graduate student in analysis.

Unfortunately, FA and PDEs are often taught in separate courses, even though
they are intimately connected. Many questions tackled in FA originated in PDEs (for
a historical perspective, see, e.g., J. Dieudonné [1] and H. Brezis—-F. Browder [1]).
There is an abundance of books (even voluminous treatises) devoted to FA. There
are also numerous textbooks dealing with PDEs. However, a synthetic presentation
intended for graduate students is rare. and I have tried to flll this gap. Students who
are often fascinated by the most abstract constructions in mathematics are usually
attracted by the elegance of FA. On the other hand, they are repelled by the never-
ending PDE formulas with their countless subscripts. I have attempted to present
a “smooth” transition from FA to PDEs by analyzing first the simple case of one-
dimensional PDEs (i.e., ODEs—ordinary differential equations), which looks much
more manageable to the beginner. In this approach, I expound techniques that are
possibly too sophisticated for ODEs, but which later become the cornerstones of
the PDE theory. This layout makes it much easier for students to tackle elaborate
higher-dimensional PDEs afterward.

A previous version of this book, originally published in 1983 in French and fol-
lowed by numerous translations, became very popular worldwide, and was adopted
as a textbook in many European universities. A deficiency of the French text was the

vii
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lack of exercises. The present book contains a wealth of problems. I plan to add even
more in future editions. I have also outlined some recent developments, especially
in the direction of nonlinear PDEs.

Brief user’s guide

1. Statements or paragraphs preceded by the bullet symbol e are extremely impor-
tant, and it is essential to grasp them well in order to understand what comes
afterward.

2. Results marked by the star symbol » can be skipped by the beginner; they are of
interest only to advanced readers.

3. In each chapter I have labeled propositions, theorems, and corollaries in a con-
tinuous manner (e.g., Proposition 3.6 is followed by Theorem 3.7, Corollary 3.8,
etc.). Only the remarks and the lemmas are numbered separately.

4. In order to simplify the presentation I assume that all vector spaces are over
R. Most of the results remain valid for vector spaces over C. I have added in
Chapter 11 a short section describing similarities and differences.

5. Many chapters are followed by numerous exercises. Partial solutions are pre-
sented at the end of the book. More elaborate problems are proposed in a separate
section called “Problems” followed by “Partial Solutions of the Problems.” The
problems usually require knowledge of material coming from various chapters.
I have indicated at the beginning of each problem which chapters are involved.
Some exercises and problems expound results stated without details or without
proofs in the body of the chapter.

Acknowledgments

During the preparation of this book I received much encouragement from two dear
friends and former colleagues: Ph. Ciarlet and H. Berestycki. I am very grateful to
G. Tronel, M. Comte, Th. Gallouet, S. Guerre-Delabriére, O. Kavian, S. Kichenas-
samy, and the late Th. Lachand-Robert, who shared their “field experience” in dealing
with students. S. Antman, D. Kinderlehrer, and Y. Li explained to me the background
and “taste” of American students. C. Jones kindly communicated to me an English
translation that he had prepared for his personal use of some chapters of the original
French book. I owe thanks to A. Ponce, H.-M. Nguyen, H. Castro, and H. Wang,
who checked carefully parts of the book. I was blessed with two extraordinary as-
sistants who typed most of this book at Rutgers: Barbara Miller, who is retired, and
now Barbara Mastrian. I do not have enough words of praise and gratitude for their
constant dedication and their professional help. They always found attractive solu-
tions to the challenging intricacies of PDE formulas. Without their enthusiasm and
patience this book would never have been finished. It has been a great pleasure, as



Preface ix
ever, to work with Ann Kostant at Springer on this project. I have had many oppor-

tunities in the past to appreciate her long-standing commitment to the mathematical
community.

The author is partially supported by NSF Grant DMS-0802958.

Haim Brezis
Rutgers University
March 2010



Contents

(T g T vii
1 The Hahn-Banach Theorems. Introduction to the Theory of
Conjugate ConvexFunctions ......................ciiiiiinnnnnn. 1
1.1 The Analytic Form of the Hahn-Banach Theorem: Extension of
Linear Functionals. .........c.ooiiiiiiiiiiniiiiiiiinnninnnnn. 1
1.2 The Geometric Forms of the Hahn-Banach Theorem: Separation

OF CONVEX BSOS 555 515 v 005 5.8 5.578 55 st 605w 5008 s Wi S8 i, o109, 908 5 o7 5 4
1.3 The Bidual E**. Orthogonality Relations . ...................... 8
14 A Quick Introduction to the Theory of Conjugate Convex Functions 10
CommentsonChapter 1 ........ovutiiiiniineinninnnenioncnnenans 17
Exercises fOr CRAPET L . .. o« cusis sia e a6 608 5w 912 a8 06 5 616 510 908 58 00005 50 s 19

2 The Uniform Boundedness Principle and the Closed Graph Theorem 31
2.1 TheBaireCategoryTheorem ..........ccioiiieiiiniinnenennnns 31
22 The Uniform Boundedness Principle ........................0. 32
2.3 The Open Mapping Theorem and the Closed Graph Theorem...... 34
24 Complementary Subspaces. Right and Left Invertibility of Linear

[0 100 - wire okl gl 37
2.5 Orthogonality Revisited ...............ccoiiiniiiiiiiiinnnnnn. 40
2.6 An Introduction to Unbounded Linear Operators. Definition of the

e {1 1 P 43
2.7 A Characterization of Operators with Closed Range.

A Characterization of Surjective Operators ..................... 46
CommentsonChapter 2...........oiiiiiiiiiiiiiiiinneeennnnnns 48
Exercises for Chapter2 .. ........coiiiiinneniseeennnnenenenennnns 49

3  Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform
COMYCXIY oo i0saowis via i smbio s s o 50505 w0 5855 0380 o ¥ist 4 018 0 418815 W(s 51 55
3.1 The Coarsest Topology for Which a Collection of Maps Becomes
CONTNWONS « 5552 515 515 570 505 ok ot 581§ 0 180000 STT T3 S & o8, LTl e 545 55

Xi



xii

Contents

3.2 Definition and Elementary Properties of the Weak Topology

O(E, E) oo e e 57
3.3 Weak Topology, Convex Sets, and Linear Operators ... ........... 60
34 The Weak* Topology 0 (E*, E) ..ot 62
3.5 ReflexiVe SPACES « i v viwsmsmsmas e s snisine susasosamemnans e oms 67
3.6 Separable Spaces................. . 72
3.7 Uniformly Convex Spaces .............coiuiiieriininninnnn.. 76
Coniments OnCRAPIEE'D v« v s e s soiis vima s ums o s imsm s ae 5a a0 s 0 537 9 5 78
Exercises forChapter 3 .............. ittt 79
LP SPOCES ws 155055 w woawimwiosinsm s 98 61065515 305055 8 @565 008 5 55 8 846§ 555053 89
4.1 Some Results about Integration That Everyone Must Know ....... 90
4.2 Definition and Elementary Properties of L” Spaces .............. 91
4.3 Reflexivity. Separability. Dual of L? .. ......................... 95
4.4 Convolution and regularization ...............c.cooveiiinnnn... 104
4.5 Criterion for Strong Compactnessin L? . ....................... 111
CommentsonChapter 4. ....... ..., 114
Exercises for Chapter 4 .. .uuamsescisupmss susnvmesssnsnsassniss s 118
Hilbert Spaces . ...... ... ...t 131
5.1 Definitions and Elementary Properties. Projection onto a Closed

CONVEX SEE 5 55555 515 56 310 5.5 55 5 68 005 514 300555 6 @05 5055758 ¥ 8 %4 6w 5.0 &1 8 131
5.2 The Dual Space of aHilbert Space ................covvviiinn.. 135
5.3 The Theorems of Stampacchia and Lax-Milgram . ............... 138
5.4 Hilbert Sums. Orthonormal Bases ..................coovuuiinn, 141
Commentson Chapler S:.vviviiaossmsaivsmsensvissswesesss s owi 5 144
Exercises forChapter 5 .. ...... ..ot 146
Compact Operators. Spectral Decomposition of Self-Adjoint
Compact Operators ............c.ouuuiiiiiiieeniiieeineannenn 157
6.1 Definitions. Elementary Properties. Adjoint.:......... G B8 s s e 157
6.2 The Riesz—Fredholm Theory ..............ccoiiiiiiiinennnnn. 159
6.3 The Spectrum of a Compact Operator. ............coovvvuevnn... 162
6.4 Spectral Decomposition of Self-Adjoint Compact Operators. ... . .. 165
CommentsonChapter 6. ............c.coiiiiiiiiiiiiiiiinnnnennn 168
Exercises forChapter6 ...:.oisvimisiavovsmimimissasisvsmsavassms 170
The Hille-YosidaTheorem .................ooiiiiiiiiiiiinniinnn 181
7.1 - Definition and Elementary Properties of Maximal Monotone

OPerators . ........uiinii i e 181
7.2 Solution of the Evolution Problem 4% + Au = 0 on [0, +00),

u(0) = ug. Existence and uniqueness . ............c.ooeeieniiinn. 184
7.3 Regularity...........cooovviiiinans N BE S NEREHEEEA Es 191
7.4 The Self-Adjoint Case ............coueimiinieinnneeeeennnnen. 193

Commentson Chapter 7. .. ... ... e 197



Contents xiii

8 Sobolev Spaces and the Variational Formulation of Boundary Value

Problems in One Dimension . ................. ..., 201
B MOVAIION .o cvicn s e oo srns mviars o ecnsiie o s i sia o ace oo o leis o0 s 201
8.2 The Sobolev Space W' P(I) ... ...ooiiuiiiiiiiieaaannnn. 202
83 TheSPace Wy ...\ oueeeiee e et eee e e 217
8.4 Some Examples of Boundary Value Problems ................... 220
85 TheMaximumPrinciple...........oooiiiiiiiiiiiiiiinnnnnnn. 229
8.6 Eigenfunctions and Spectral Decomposition .................... 231
Commentson Chapter 8. . ... oorsssavsannsssssroress T 233
Exercises for'Chapler8 ... s ossmusssmmmmamsaesyamay i an soaams 235
9 Sobolev Spaces and the Variational Formulation of Elliptic

Boundary Value Problems in N Dimensions . ...................... 263

9.1 Definition and Elementary Properties of the Sobolev Spaces
L (4 ) R 263
9.2. EXIENSIon OPETatOrs: i oo wsmwss susrm sinisios samamamies swrssosisan es s 272
9.3 Sobolev IneqUAlItIEs « ;. 5o w5 amve vws s iwaws saem iwsws 98w 6 278
9.4 TheSpace Wy P(2) ...oovoeinriiiiieiiiiiieieeaa 287
9.5 Variational Formulation of Some Boundary Value Problems .. ..... 291
9.6 Regularity of Weak Solutions. . ................cooiiiiiiiia. 298
9.7 TheMaximum Principle............ ... ... ..., 307
9.8 Eigenfunctions and Spectral Decomposition .................... 311
Comments onCRAPLEEY . .o ix e oco 0eiioioi5 5 5 508 518 506 358 0.0 028 b 378 418 65804 o1 ke 312
10 Evolution Problems: The Heat Equation and the Wave Equation .. .. 325
10.1 The Heat Equation: Existence, Uniqueness, and Regularity ........ 325
10.2 The Maximum Principle . ............ ... ... ... oiiiiiia.. 333
10.3 TheWave Equation . ............oiiiiiiiiiiiiiininnennannnn. 335
CommentsonChapter 10....... ... ittt 340
11 Miscellaneous Complements.......................cooiiiirnnn.... 349
11.1 Finite-Dimensional and Finite-Codimensional Spaces ............ 349
11.2 QuOtient SPaces . ... ...vvviiinit i 353
- 11.3 Some Classical Spaces of Sequences .................covuen... 357
11.4 Banach Spaces over C: What Is Similar and What Is Different? . . .. 361
Solutions of Some Exercises ....................cciiiiiiiiiiiiia.., 371
Problems . . ... e e et e e 435
Partial Solutionsof the Problems ................ .. .. ... ........... 521
NOBRBON - 5 050 555005005 win srors o wim w5 8076 575076 w0 508 60 558 .6 5806 578 40w 10 510 583
ReEferemCeS . . . ..ottt e e 585



Chapter 1

The Hahn-Banach Theorems. Introduction to
the Theory of Conjugate Convex Functions

1.1 The Analytic Form of the Hahn-Banach Theorem: Extension
of Linear Functionals

Let E be a vector space over R. We recall that a functional is a function defined
on E, or on some subspace of E, with values in R. The main result of this section
concerns the extension of a linear functional defined on a linear subspace of E by a
linear functional defined on all of E.

Theorem 1.1 (Helly, Hahn-Banach analytic form). Ler p : E — R be a function
satisfying'

@) p(Ax) = Ap(x) Vxe E and VA >0,

(2) p(x+y) < px)+p(y) Vx,y€E.

Let G C E be a linear subspace and let g : G — R be a linear functional such that
(3) g(x) < p(x) VxeG.

Under these assumptions, there exists a linear functional f defined on all of E that
extends g, i.e., g(x) = f(x) Vx € G, and such that

4) f(x) < p(x) Vx€E.

The proof of Theorem 1.1 depends on Zorn's lemma, which is a celebrated and
very useful property of ordered sets. Before stating Zorn’s lemma we must clarify
some notions. Let P be a set with a (partial) order relation <. We say that a subset
Q C P is totally ordered if for any pair (a, b) in Q eithera < b or b < a (or both!).
Let Q C P be a subset of P; we say that ¢ € P is an upper bound for Q ifa < ¢ for
every a € Q. We say that m € P is a maximal element of P if there is no element

! A function p satisfying (1) and (2) is sometimes called a Minkowski functional.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, |
DO 10.1007/978-0-387-70914-7_1, © Springer Science+Business Media, LLC 2011



2 1 The Hahn-Banach Theorems. Introduction to the Theory of Conjugate Convex Functions

x € P such thatm < x, except for x = m. Note that a maximal element of P need
not be an upper bound for P.

We say that P is inductive if every totally ordered subset Q in P has an upper
bound.

e Lemma 1.1 (Zorn). Every nonempty ordered set that is inductive has a maximal
element.

Zorn’s lemma follows from the axiom of choice, but we shall not discuss its
derivation here; see, e.g., J. Dugundji [1], N. Dunford-J. T. Schwartz [1] (Volume 1,
Theorem 1.2.7), E. Hewitt-K. Stromberg [1], S. Lang [1], and A. Knapp [1].

Remark 1. Zorn’s lemma has many important applications in analysis. It is a basic
tool in proving some seemingly innocent existence statements such as “‘every vector
space has a basis” (se¢ Exercise 1.5) and “on any vector space there are nontrivial
linear functionals.” Most analysts do not know how to prove Zorn’s lemma; but it is
quite essential for an analyst to understand the statement of Zorn’s lemma and to be
able to use it properly!

Proof of Lemma 1.2. Consider the set

D(h) is a linear subspace of E,
P={h:D(h)C E— R|hislinear, G C D(h),
h extends g, and h(x) < p(x) Vx € D(h)

On P we define the order relation
(hy < hy) & (D(h)) C D(hy) and h; extends hj).

It is clear that P is nonempty, since g € P. We claim that P is inductive. Indeed, let
Q C P be atotally ordered subset; we write Q as Q = (h;);c; and we set

D(h) = U D(h;), h(x) = hi(x) ifx € D(h;) for somei.

iel

It is easy to see that the definition of & makes sense, that h € P, and that h is
an upper bound for Q. We may therefore apply Zorn’s lemma, and so we have a
maximal element f in P. We claim that D(f) = E, which completes the proof of
Theorem 1.1.

Suppose, by contradiction, that D(f) # E.Letxg ¢ D(f); set D(h) = D(f)+
Rxo, and for every x € D(f), set h(x + txg) = f(x) + ta (t € R), where the
constant @ € R will be chosen in such a way that & € P. We must ensure that

fx)+ta < p(x+txg) Vxe D(f) and VteR.

In view of (1) it suffices to check that
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f(x)+a < p(x+x) Vxe D(f),
f(x) —a < p(x—x0) Vx € D(f).

In other words, we must find some o satisfying

sup {f(y) —p(y—x0)} <a =< inf {p(x+x0)— f(x)}.
yeD(f) xeD(f)

Such an « exists, since

SO) = p(y —x0) < p(x+x0) — f(x) Vx € D(f), Vye D(f);

indeed, it follows from (2) that

F@X)+ f(») < p(x +y) < p(x + x0) + p(y — x0).

We conclude that f < h; but this is impossible, since f is maximal and & # f.

We now describe some simple applications of Theorem 1.1 to the case in which
E is a normed vector space (n.v.s.) with norm || |.

Notation. We denote by E* the dual space of E, that is, the space of all continuous
linear functionals on E; the (dual) norm on E* is defined by

5) I flles = sup |f(x)|= sup f(x).
lIxli<1 llxll<1
x€E x€E

When there is no confusion we shall also write || f|| instead of || f|| g+.

Given f € E* and x € E we shall often write £, x) instead of f(x); we say that
(, ) is the scalar product for the duality E*, E.

It is well known that E* is a Banach space, i.e., E* is complete (even if E is not);
this follows from the fact that R is complete.

e Corollary 1.2. Let G C E be a linear subspace. If g : G — R is a continuous
linear functional, then there exists f € E* that extends g and such that

I flles = sup |g(x)| = ligllg*-
xeG
flxll<1
Proof. Use Theorem 1.1 with p(x) = |Igllg- x|
e Corollary 1.3. For every xg € E there exists fo € E* such that

Il foll = lixoll and ( fo, x0) = llxoll®.

Proof. Use Corollary 1.2 with G = Rxpand g(txo) = t||xo|2,sothat |Igllg* = |Ixoll.

Remark 2. The element fp given by Corollary 1.3 is in general not unique (try
to construct an example or see Exercise 1.2). However, if E* is strictly con-
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vex2—for example if E is a Hilbert space (see Chapter 5) or if E = LP () with
I < p < 0o (see Chapter 4)—then f is unique. In general, we set, for every xy € E,

Fxo) = { fo € E* 1ol = Ixoll and (fo, o) = lixol1?}

The (multivalued) map xo —> F(xp) is called the duality map from E into E*; some
of its properties are described in Exercises 1.1, 1.2, and 3.28 and Problem 13.

e Corollary 1.4. For every x € E we have

© lxll = sup Kf x)| = max |(f,x)|.
feE* feE"
=1 IFn=1

Proof. We may always assume that x # 0. It is clear that

sup [(f, x} < llx|l.
€E"

f
ru=1
On the other hand, we know from Corollary 1.3 that there is some fy € E* such
that || foll = Ilx|l and (fo,x) = llx|% Set fi = fo/llx|, so that || fi]| = I and
(fi, x) = lixll.

Remark 3. Formula (5)—which is a definition—should not be confused with formula
(6), which is a statement. In general, the “sup” in (5) is not achieved; see, e.g.,
Exercise 1.3. However, the “sup” in (5) is achieved if E is a reflexive Banach space
(see Chapter 3); adeep result due to R. C. James asserts the converse: if E is a Banach
space such that for every f € E* the sup in (5) is achieved, then E is reflexive; see,
e.g., J. Diestel [1, Chapter 1] or R. Holmes [1].

1.2 The Geometric Forms of the Hahn-Banach Theorem:
Separation of Convex Sets

We start with some preliminary facts about hyperplanes. In the following, E denotes
an n.v.s.

Definition. An affine hyperplane is a subset H of E of the form
H={x€eE; f(x)=a},

where f is a linear functional® that does not vanish identically and @ € R is a given
constant. We write H = [f = «] and say that f = « is the equation of H.

2 A normed space is said to be strictly convex if |tx 4+ (1 — )yl < 1,Vt € (0, 1), Vx, y with
lIxll = llyll = I and x # y; see Exercise 1.26.

3 We do not assume that f is continuous (in every infinite-dimensional normed space there exist
discontinuous linear functionals; see Exercise 1.5).
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Propesition 1.5. The hyperplane H = [ f = «] is closed if and only if f is contin-
uous.

Proof. Ttis clear that if f is continuous then H is closed. Conversely, let us assume
that H is closed. The complement H€ of H is open and nonempty (since f does not
vanish identically). Let xo € H€, so that f(xp) # «, for example, f(x¢) < .

Fix r > 0 such that B(xg, r) C H¢, where

B(xp,r) ={x € E; |lx — x|l < r}.
We claim that
@) f(x) <a Vx € B(xp,r).

Indeed, suppose by contradiction that f(x;) > « for some x; € B(xg,r). The
segment
{xr =(1=t)xo+1tx1;1 €[0, 1]}

is contained in B(xp, r) and thus f(x;) # a, ¥Vt € [0, 1]; on the other hand, f(x;) =
aforsomet € [0, 1], namely t = (xl"_";o , acontradiction, and thus (7) is proved.
It follows from (7) that

fxo+rz) <a Vze B(O,1).
Consequently, f is continuous and || f|| < %(a — f(xo0)).

Definition. Let A and B be two subsets of E. We say that the hyperplane H = [f =
«) separates A and B if

[f@)<a VxeA and f(x)>a VxeB.]

We say that H strictly separates A and B if there exists some £ > 0 such that

[f6)<a—¢ VicAand fx)>a+e VxeB.|

Geometrically, the separation means that A lies in one of the half-spaces deter-
mined by H, and B lies in the other; see Figure 1.
Finally, we recall that a subset A C E is convex if

ltx+(1—1)ye€A Vx,yeA, Vie[0,1]]

e Theorem 1.6 (Hahn—-Banach, first geometric form). Let A C E and B C E be
two nonempty convex subsets such that AN B = @. Assume that one of them is open.
Then there exists a closed hyperplane that separates A and B.

The proof of Theorem 1.6 relies on the following two lemmas.

Lemma 1.2. Let C C E be an open convex set with 0 € C. For every x € E set



