Javadiiy i

WEREURERNT75FEN
(ZE3ZhiR)

Fred Long Dhruv Mohindra Robert C. Seacord

Dean F. Sutherland David Svoboda =

]

Java Coding Guidelines

75 Recommendations for Reliable and Secure Programs

Y i g E AR

Javadihfir

BSRSTREFNTSREN
(S&3THR)

Fred Long Bhruv Mohindra RobertC. Seacord .

(=] Dean F."8utherland bévid,?Voboda

Java Coding Guidelines

75 Recommendations for Reliable and Secure Programs

N B R R R A
b =

EHERSRME (C1P) #iE
Javafifiiere : MELEWHREFKTSEEN =

Java Coding Guidelines: 75 Recommendations for
Reliable and Secure Programs : 3 / (&) B

(Long,F.) &Z. — Jbm : ABREBHHAREE, 2015. 10
ISBN 978-7-115-40401-5

I. @J- 1. O L. OJAVAES — Bt —
¥ IV. ©rP312

b E A B B IECIPHE % - (2015) 352221435

HRERE

AA5R (Java ZRGRIFAAE) — 0T R, B PIEABLEAR BN Java %44 brE(H R[]
HEFERREAR IR LA Java GiflD S BRI K, I 41X LORIRE OSBRI AL T MR 3C
RARIE S, DARA RN . 153 AT DU AR 1545 0 Java 207 A T HAS, #UE A
B, RE A QRGBT B BB, S SRR TR BB A B, AR P8
tH RSB FO R BEAT R 5 A B 152, 7T LUE B2 A BT MU, RE0H T f Java 240N,
WGRXT Java ZAKFE. BT MM BT BRI RO EAR

AL T HB) Java WA TR RN, 280, TR, 8K, B,
] PR AT S A RGN 75 SRR, IEA P Java TR G, 4 ws
BeRe MR E A2 S 5%

e

¢ E [3£] FredLong Dhruv Mohindra Robert C. Seacord
Dean F. Sutherland David Svoboda

LS RN
TUEEH kR AR
¢ ANRESHHAALHURAT bR s ik 15
% 100164 HLFHELE 315@ptpress.com.cn
41k http://www.ptpress.com.cn

[i] 222 S84 1l B R A7 R 2] A
® JFA: 720x960 1/16

ENgk: 18

FH: 298 T4 2015410 A% 1)K

EP¥C: 1 —2 000 b 2015 4 10 AAL4EE 1 eI
FERER SIS EF: 01-2015-6171 5

Efr: 59.00 7
EERS Mik: (010)81055410 EPEFREHZ: (010) 81055316
R ERR#Z%: (010) 81055315
[TEZSEFNE: ZEIEFE 0021 S

\/

Chapter 1

Security /| &£

1.

Limit the lifetime of sensitive data

W e Al P 2= i S 39

Do not store unencrypted sensitive information on the client side
ANBEAE P S A7t AR 28 0 R SRR

Provide sensitive mutable classes with unmodifiable wrappers

A U AT AR AEAS I i A e

Ensure that security-sensitive methods are called with

validated arguments

O G Y RP N AL LN S €2 K AT

. Prevent arbitrary file upload

B (AR RS A%

. Properly encode or escape output

T Aify b 2h i i A S
Prevent code injection

B AR

. Prevent XPath injection

i 1l XPath 7 EA

11

13

16

20

23

i A%
9. Prevent LDAP injection 27
B 1l: LDAP 7EA

10. Do not use the clone() method to copy untrusted method
parameters 31
AEAEH] clone () Jy R B HIA I (51T 1k 54

11. Do not use Object.equals() to compare cryptographic keys 34
RE A1) Object. equals () K Hoki 4]

12. Do not use insecure or weak cryptographic algorithms 36
AN FIAN 22 410 95 I 5%

13. Store passwords using a hash function 37
A8 T OO R B A 1

14. Ensure that SecureRandom is properly seeded 42
ffif SecureRandom JF-ff i BEALER T

15. Do not rely on methods that can be overridden by untrusted code 44
AN BEATRT AR AN T 35 AR 5 1) ik

16. Avoid granting excess privileges 50
eSS BUEZ Y

17. Minimize privileged code 54
B/ MEFFBALHS

18. Do not expose methods that use reduced-security checks to
untrusted code 56
ANELRG AL AR 22 A A 2 1) 5 R 2 ik 4 AN T A5 4K

19. Define custom security permissions for fine-grained security 64
X AIRE L 1) 2 4 SCIA 52 4R

20. Create a secure sandbox using a security manager 67
i A AR — A A D £

21. Do not let untrusted code misuse privileges of callback methods 72
ANBELEAATAE ARG 1 H (1] 7 i (R4 AL

Chapter 2 Defensive Programming / B5{ET 2 79
22. Minimize the scope of variables 80

B/ MR R A]

B*

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Minimize the scope of the @SuppressWarnings annotation 82
/M @suppressWarnings JEfF K 1 45

Minimize the accessibility of classes and their members 84
I /MU B G RS 5% R AT 1)

Document thread-safety and use annotations where applicable 89
SCRAARTT i e 2 Atk

Always provide feedback about the resulting value of a method 96

A TIE R GE RS S 5t

Identify files using multiple file attributes 99
i FH 2 AN S A U S

Do not attach significance to the ordinal associated with an enum 106
ANBEIR TR H R (M AR TR R R X

Be aware of numeric promotion behavior 108
HEEBCTRTHT A

Enable compile-time type checking of variable arity

parameter types 112
X AR S 2 T 1 I R A £

Do not apply public final to constants whose value might change

in later releases 115
AEHAAE LS IRA T AT RE 2 A AR H B BBy public final

Avoid cyclic dependencies between packages 118
8 G £, 2 T PO A A

Prefer user-defined exceptions over more general

exception types 121
AR B e SO S T AR FE 82 (1R e 2R 2

Try to gracefully recover from system errors 123
SR G R UK R

Carefully design interfaces before releasing them 125
A He 11 B B v

Write garbage collection—friendly code 128

i 55 o 7 R [B LA A XS

H¥

Chapter 3 Reliability / SI§gE

37.

38.

39.

40.

41.

42.

43,

44,

45.

46.

47.

48.

Do not shadow or obscure identifiers in subscopes
ANEELE A I L o 4 6 A TR A
Do not declare more than one variable per declaration
ANEAE AL B AN
Use meaningful symbolic constants to represent literal values
in program logic
FERE I8 B AT T S 455 AR S 7l
Properly encode relationships in constant definitions
FEN 2 SCPRS 2 M R L2 R R R
Return an empty array or collection instead of a null value for
methods that return an array or collection
X IR P s E R 0 Tk, R A28 o sl
T A AR o] — A 23 1
Use exceptions only for exceptional conditions
U0 IGO0 A0 e i
Use a try-with-resources statement to safely handle closeable
resources
] try-with-resources i1 % 4> b B] 56 PA) %5 5t
Do not use assertions to verify the absence of
runtime errors
AR 5 R AE AL R AT I 15
Use the same type for the second and third operands in
conditional expressions
FEFARRIL A, B8 RS = AN BN A P A R 20
Do not serialize direct handles to system resources
ANEE R HUAL R) 2R G R I O
Prefer using iterators over enumerations
SR 1) F A0 P AQRG T A M8
Do not use direct buffers for short-lived, infrequently

used objects

131
132

134

138

142

143

146

148

151

153

157

159

162

B v

X TR AR A R AN FH 6 SN A LR Gnh X

49. Remove short-lived objects from long-lived
container objects 163
MACH: A7 J 25 30 B p B R A A T IR R

Chapter 4 Program Understandability / F2FREIJERENE 167

50. Be careful using visually misleading identifiers and literals 167
VERLAE RS AR S PR ROAR AR T

51. Avoid ambiguous overloading of variable arity methods 171
B LB A STk

52. Avoid in-band error indicators 173
FEIE G A N B R R

53. Do not perform assignments in conditional expressions 175
AREAE S AR P BT

54. Use braces for the body of an if, for, or while statement 178
ARG 540 i F, for ok while fUEE fASE K

55. Do not place a semicolon immediately following an if, for, or
while condition 180
AN AR iF, for o while SAFERIS NS

56. Finish every set of statements associated with a case label with a
break statement 181
{EAG—A case 43 AREGEehn 1 break 6]

57. Avoid inadvertent wrapping of loop counters 183
HBEGAS 2 B T SRR S

58. Use parentheses for precedence of operation 186
IG5 s A A e 21

59. Do not make assumptions about file creation 189
ANBERF SO) B AT AT B

60. Convert integers to floating-point for floating-point operations 191
i R385 A A BB O 7 R

61. Ensure that the clone() method calls super.clone() 194

EXT B cloneQ 144 I super.clone()

vi

Bx

62.

63.

64.

65.

Use comments consistently and in a readable fashion
BREFHERE 10— BOHE AT T e

Detect and remove superfluous code and values
BB BRITAR A AR A

Strive for logical completeness

R EAARIEIZ R 58 %

Avoid ambiguous or confusing uses of overloading

G AT 5 SO FE AR D A T

Chapter 5 Programmer Misconceptions / 25REVE MIRAR

66.

67.

68.

69.

70.

71.

V2.

Do not assume that declaring a reference volatile guarantees

safe publication of the members of the referenced object
AEARBAEH] volatile SCBE T W 51 I o] LAARAE 5| FH B
TR 242 R A

Do not assume that the sleep(), yield(Q), or getState() methods

provide synchronization semantics

AE R sleep() yieldO BR getState) JriZffit T [l i X

Do not assume that the remainder operator always returns a

nonnegative result for integral operands

AN BB BT B A o S R [T 3

Do not confuse abstract object equality with reference

equality

ANEEFE IR A GO0 G KRS R AN 5| FH (AR S5

Understand the differences between bitwise and

logical operators

HRARAL AT IS ST FIE RIS T 2 1) 1 22 5

Understand how escape characters are interpreted when

strings are loaded

SRR BT AR B 0 e RS ok 4 e S

Do not use overloaded methods to differentiate between

runtime types

AN B B 7 1R X ARG8T I 2

196

198

202

205

209

209

216

220

222

225

228

231

Bx vii

73. Never confuse the immutability of a reference with
that of the referenced object 234
ANELFER GBI AS AT AR RIS S AN T A2 P

74. Use the serialization methods writeUnshared() and
readUnshared() with care 239
VAT P 414k 777 writeUnshared () fil readUnshared()

75. Do not attempt to help the garbage collector by setting

local reference variables to nul1 243

AN T AR 5 | AR BV A nu T KA BB S AR A
Appendix A Android 245
Glossary / K&« 249

References / &3k 255

Security

The Java programming language and runtime system were designed with security in
mind. For example, pointer manipulation is implicit and hidden from the
programmer, and any attempt to reference a null pointer results in an exception
being thrown. Similarly, an exception results from any attempt to access an array or a
string outside of its bounds. Java is a strongly typed language, and all implicit type
conversions are well defined and platform independent, as are the arithmetic types
and conversions. The Java Virtual Machine (JVM) has a built-in bytecode verifier to
ensure that the bytecode being run conforms to the Java Language Specification:
Java SE 7 Edition (JLS) so that all the checks defined in the language are in place and
cannot be circumvented.

The Java class loader mechanism identifies classes as they are loaded into the JVM,
and can distinguish between trusted system classes and other classes that may not be
trusted. Classes from external sources can be given privileges by digitally signing them;
these digital signatures can also be examined by the class loader, and contribute to the
class’s identification. Java also provides an extensible fine-grained security mechanism
that enables the programmer to control access to resources such as system informa-
tion, files, sockets, and any other security-sensitive resources that the programmer
wishes to use. This security mechanism can require that a runtime security manager be
in place to enforce a security policy. A security manager and its security policy are
usually specified by command-line arguments, but they may be installed programmat-
ically, provided that such an action is not already disallowed by an existing security
policy. Privileges to access resources may be extended to nonsystem Java classes by
relying on the identification provided by the class loader mechanism.

2 Chapter1 = Security

Enterprise Java applications are susceptible to attacks because they accept
untrusted input and interact with complex subsystems. Injection attacks (such as
cross-site scripting [XSS], XPath, and LDAP injection) are possible when the
components susceptible to these attacks are used in the application. An effective
mitigation strategy is to whitelist input, and encode or escape output before it is
processed for rendering.

This chapter contains guidelines that are concerned specifically with ensuring
the security of Java-based applications. Guidelines dealing with the following secu-
rity nuances are articulated.

1. Dealing with sensitive data
2. Avoiding common injection attacks
3. Language features that can be misused to compromise security

4. Details of Java’s fine-grained security mechanism

m 1. Limit the lifetime of sensitive data

Sensitive data in memory can be vulnerable to compromise. An adversary who can
execute code on the same system as an application may be able to access such data if
the application

m Uses objects to store sensitive data whose contents are not cleared or garbage-
collected after use

® Has memory pages that can be swapped out to disk as required by the operating
system (for example, to perform memory management tasks or to support
hibernation)

m Holds sensitive data in a buffer (such as BufferedReader) that retains copies of
the data in the OS cache or in memory

m Bases its control flow on reflection that allows countermeasures to circumvent
the limiting of the lifetime of sensitive variables

m Reveals sensitive data in debugging messages, log files, environment variables,
or through thread and core dumps

Sensitive data leaks become more likely if the memory containing the data is not
cleared after using the data. To limit the risk of exposure, programs must minimize
the lifetime of sensitive data.

Complete mitigation (that is, foolproof protection of data in memory) requires
support from the underlying operating system and Java Virtual Machine. For exam-
ple, if swapping sensitive data out to disk is an issue, a secure operating system that
disables swapping and hibernation is required.

1. Limit the lifetime of sensitive data 3

Noncompliant Code Example

This noncompliant code example reads user name and password information from
the console and stores the password as a String object. The credentials remain
exposed until the garbage collector reclaims the memory associated with this String.

class Password {
public static void main (String args[]) throws IOException {
Console ¢ = System.console();
if . (c == null) {
System.err.printin("No console.");
System.exit(l);
1

c.readLine("Enter your user name: ");
c.readLine("Enter your password: ");

String username
String password

Il

if (lverify(username, password)) {
throw new SecurityException("Invalid Credentials");

}

Vil A
}

// Dummy verify method, always returns true
private static final boolean verify(String username,
String password) {
return true;
i
}

Compliant Solution

This compliant solution uses the Console.readPassword() method to obtain the
password from the console.

class Password {
public static void main (String args[]) throws IOException {
Console c = System.console();

11 (e = nukl) i
System.err.printin("No console.");
System.exit(l);

}

c.readLine("Enter your user name: ");
c.readPassword("Enter your password: ");

String username
char[] password

4 Chapter 1 & Security

if (!verify(username, password)) {
throw new SecurityException("Invalid Credentials');

}

// Clear the password
Arrays.fill(password, ' ');
1

// Dummy verify method, always returns true
private static final boolean verify(String username,
char[] password) {
return true;
i
}

The Console. readPassword() method allows the password to be returned as a
sequence of characters rather than as a String object. Consequently, the program-
mer can clear the password from the array immediately after use. This method also
disables echoing of the password to the console.

Noncompliant Code Example

This noncompliant code example uses a BufferedReader to wrap an InputStream-
Reader object so that sensitive data can be read from a file:

void readData() throws IOException{
BufferedReader br = new BufferedReader (new InputStreamReader (
new FileInputStream("file")));
// Read from the file
String data = br.readLine();
}

The BufferedReader. readLine() method returns the sensitive data as a String
object, which can persist long after the data is no longer needed. The BufferedReader
.read(char[], int, int) method can read and populate a char array. However, it
requires the programmer to manually clear the sensitive data in the array after use.
Alternatively, even if the BufferedReader were to wrap a FileReader object, it would
suffer from the same pitfalls.

Compliant Solution

This compliant solution uses a directly allocated NIO (new 1/0) buffer to read sensi-
tive data from the file. The data can be cleared immediately after use and is not
cached or buffered in multiple locations. It exists only in the system memory.

2. Do not store unencrypted sensitive information on the client side 5

void readData(){
ByteBuffer buffer = ByteBuffer.allocateDirect(16 * 1024);
try (FileChannel rdr =
(new FileInputStream("file")).getChannel()) {
while (rdr.read(buffer) > 0) {
// Do something with the buffer
buffer.clear();
}
} catch (Throwable e) {
// Handle error
}
h

Note that manual clearing of the buffer data is mandatory because direct buffers
are not garbage collected.

Applicability

Failure to limit the lifetime of sensitive data can lead to information leaks.

Bibliography

[AP12013] Class ByteBuffer

[Oracle 2013b] “Reading ASCII Passwords from an InputStream Example” from the
Java Cryptography Architecture [JCA] Reference Guide

[Tutorials 2013] I/0 from the Command Line

m 2. Do not store unencrypted sensitive information on the
client side

When building an application that uses a client—server model, storing sensitive
information, such as user credentials, on the client side may result in its unauthor-
ized disclosure if the client is vulnerable to attack.

For web applications, the most common mitigation to this problem is to
provide the client with a cookie and store the sensitive information on the server.
Cookies are created by a web server, and are stored for a period of time on the client.
When the client reconnects to the server, it provides the cookie, which identifies
the client to the server, and the server then provides the sensitive information.

Cookies do not protect sensitive information against cross-site scripting (XSS)
attacks. An attacker who is able to obtain a cookie either through an XSS attack, or
directly by attacking the client, can obtain the sensitive information from the server

6 Chapter 1 = Security

using the cookie. This risk is timeboxed if the server invalidates the session alter a
limited time has elapsed, such as 15 minutes.

A cookie is typically a short string. If it contains sensitive information, that
information should be encrypted. Sensitive information includes user names, pass-
words, credit card numbers, social security numbers, and any other personally iden-
tifiable information about the user. For more details about managing passwords, see
Guideline 13, “Store passwords using a hash function.” For more information about
securing the memory that holds sensitive information, see Guideline 1, “Limit the
lifetime of sensitive data.”

Noncompliant Code Example

In this noncompliant code example, the login servlet stores the user name and pass-
word in the cookie to identify the user for subsequent requests:

protected void doPost(HttpServletRequest request,
HttpServiletResponse response) {

// Validate input (omitted)

String username = request.getParameter('username”);

char[] password
request.getParameter('password").toCharArray();

boolean rememberMe =
Boolean.valueOf(request.getParameter('rememberme"));

]

LoginService loginService = new LoginServiceImpl();

if (rememberMe) {
if (request.getCookies()[0] != null &&
request.getCookies()[0].getValue() != null) {
String[] value =
request.getCookies() [0].getValue() .split(";");

if (!loginService.isUserValid(value[0],
value[1l].toCharArray())) {
// Set error and return
} else {
// Forward to welcome page

}
} else {
boolean validated =
loginService.isUserValid(username, password) ;

2. Do not store unencrypted sensitive information on the client side 7

if (validated) {
Cookie ToginCookie = new Cookie("rememberme", username +
";" + new String(password));
response.addCookie(loginCookie);
// ... forward to welcome page
} else {
// Set error and return
}
}
} else {
// No remember-me functionality selected
// Proceed with regular authentication;
// if it fails set error and return

}

Arrays.fill(password, ' ');
}

However, the attempt to implement the remember-me functionality is insecure
because an attacker with access to the client machine can obtain this information
directly on the client. This code also violates Guideline 13, “Store passwords using a
hash function.”

Compliant Solution (Session)

This compliant solution implements the remember-me functionality by storing the
user name and a secure random string in the cookie. It also maintains state in the
session using HttpSession:

protected void doPost(HttpServletRequest request,
HttpServletResponse response) {

// Validate input (omitted)

String username
char[] password
request.getParameter("password").toCharArray();
boolean rememberMe =
Boolean.valueOf(request.getParameter("rememberme™));
LoginService loginService = new LoginServiceImpl(Q;
boolean validated = false;
if (rememberMe) {
if (request.getCookies()[0] != null &&
request.getCookies() [0].getValue() !=null) {

request.getParameter("username");

