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Preface

The treatment adopted in this second volume is exactly the same as that
employed so successfully in the first volume, the subject matter of each
section being presented in the form of question and answer. The reader
will find all the definitions and theory required, together with selected
problems which are fully worked out, and plenty of exercise questions
with numerical answers on which to practice and develop skill and
understanding.

The material included in this volume covers more advanced work in
Fluid Mechanics for engineering students in Universities, Polytechnics
and Colleges of Higher Education. The fullness of the treatment has in
some places had to be restricted owing to the limited space available.
The reader seeking further information in any particular field will find
it helpful to refer to “Fluid Mechanics” by Douglas, Gasiorek and
Swaffield (Pitman 2nd. Edn 1985).

I would again like to express my appreciation of the assistance which
I have received from my former colleagues in the teaching profession. I
am particularly indebted to Dr. R.D. Matthews for his advice on the
preparation of this new text and for the provision of examples and
exercises with particular reference to Chapter 9.

I hope that my readers will not hesistate to let me know of any
difficulties that they may experience with this text and I will be glad
to receive any constructive criticism.

John Douglas September 1985



Preface to third edition

I am delighted to be associated with Dr J.F. Douglas in the production
of this latest edition of Solving Problerns in Fluid Mechanics. The tried
and trusted format has been retained although some updating and
correction, as well as some additions and a little. deletion have taken
place. The books as ever provide a wealth of basic fluid mechanics
theory developed through worked solutions. In addition, the chapters
open with some brief competency statements and conclude with a
chapter summary of outcomes. In many chapters there are applica-
tions examples which will involve students in main project work in
the library, laboratory or at home.

In volume 2 there has been some amalgamation of material and an
additional chapter added introducing Computational Fluid Dynamics.
While this chapter contains worked examples the authors feel that
students should follow this with hands-on work using software
packages as available to them.

The authors are indebted to Mr Ewan Bennett for helpful contribu-
tions in volumes 1 and 2, particularly on computational fluid dynamics.

We hope that these books will continue to be of help to students and
academics studying the many fascinating branches of fluid mechanics.

Richard Matthews September 1995
Twickenham
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1.1 Checking
equations

Dimensional analysis

Introduction

Dimensional analysis is a mathematical method which is of consider-
able value in problems which occur in fluid mechanics. As explained in
Volume One all quantities can be expressed in terms of certain primary
quantities which in mechanics are Length (L), Mass (M) and Time (7).
For example

Force = mass x acceleration
= mass x length/time?

Thus the dimensions of Force will be MLT 2.

In any equation representing a real physical event every term must
contain the same powers of the primary quantities (L, M and 7). In
other words, like must be compared with like or else the equation is
meaningless, although it may balance numerically. Even if an equation
does balance in its dimensions, it may still be meaningless. Pure num-
bers (the coefficient of each term in an equation) have no dimensions
and are not accounted for by dimensional analysis.

This principle of homogeneity of dimensions can be used, (1) to
check whether an equation has been correctly formed, (2) to establish
the form of an equation relating a number of variables, and (3) to assist
in the analysis of experimental results.

Learning outcomes

After working through the examples and problems in this chapter, the
student should be able to

1. Determine whether a given equation is a mathematically plausible
relationship by means of dimensional analysis and state any pro-
blems associated with such a conclusion.

2. Equate indices of fundamental quantities to determine the influence
of physical quantities such as viscosity, density, velocity, etc., on a
particular physical quantity of interest.

Show by dimensional analysis that the equation
p+ipv+pez=H

is a possible relationship between the pressure p, velocity v and
height above datum z for frictionless flow along a streamline of a

DIMENSIONAL ANALYSIS 1



1.2 Velocity of a
pressure wave

fluid of mass density p, and determine the dimensions of the
constant H.

Solution. If the equation represents a physically possible relationship
each term must have the same dimensions and therefore contain the
same powers of the primary quantities L, M and T.

The procedure to be adopted is first to determine the dimensions of
each of the variables in terms of L, M and T, and then to examine the
dimensions of each term in the equation.

The dimensions of the variables are

force mass x acceleration

Pressure p = =
area area
=MLTT?
Mass density p = D2 =M
volume
; length
Velocity v = c.ngt =LT!
time

Gravitational acceleration g = LT 2
Height above datum z = L
The dimensions of each term on the left-hand side are
p=ML'T? 1o =ML x’T*=ML'T?
pgz =ML x LT > x L=ML™'T™

Thus all terms have the same dimensions and the equation is Physically
possible if the constant H also has the dimensions ML™'T7%,

The constant of % in the second term is a pure number and thus not
amenable to dimensional analysis. Had this been any other value, the

process would have been equally valid. Something in addition to
dimensional analysis is required to settle the fact that this constant is .

The velocity of propagation a of a pressure wave through a
liquid could be expected to depend upon the elasticity of the
liquid represented by the bulk modulus K and its mass density
p. Establish by dimensional analysis the form of a possible rela-
tionship.

Solution. Assume a simple exponential equation
a=CK*p (1)

where C is a numerical constant and a and b are unknown powers.

2 SOLVING PROBLEMS IN FLUID MECHANICS



1.3 Pipe flow

The dimensions of the variables are: velocity @ = LT, bulk mod-
ulus K = ML™'T72, mass density p = ML™>. If equation (1) is to be
correct the powers a and b must be such that both sides of the equation
contain the same powers of M, L and T. Rewrite equation (1) replacing
each quantity by its dimensions, remembering that the constant Cis a
pure number.

L M T P ™
Equating powers of M, L and T,

O=a+b
l=-a-3b
—1=-2a

from which

a=+} and b=-}
2 e b K
Thus a possible equation is a = C \/ (;)

Compare this result with example 10.5.
Dimensional analysis gives the form of a possible equation but the
value of the constant C would have to be determined experimentally.

Show that a rational formula for the loss of pressure when a
fluid flows through geometrically similar pipes is

_va(ﬂ)
p d¢ ”

where d is the diameter of the pipe, / is the length of the pipe, p is
the mass density and p the dynamic viscosity of the fluid, v is the
mean velocity of flow through the pipe and ¢ means ““a function
of”.

Solution. Assume p =.Cp°I°v°d®)/ where C is a numerical constant
and a, b, ¢, e, fare unknown powers.

The dimensions of the quantities are: {; = ML"T_Z, p= ML",
I=L,v=LT',d=Land p=ML"'T™".

Substituting these dimensions for the quantities,

ML'T2=ML ™ x L x LT xL*x M L/T”/
Equating powers of M, L and T,

l=a+f (1)
-1=-3a+b+ct+e-f (2)
~2a~g~f ©)

There are five unknown powers and only three equations, so that it
must be decided to solve for three of the unknown powers in terms of
the others. In practice this decision is made from experience; in exam-

DIMENSIONAL ANALYSIS 3



1.4 Pipe flow

ination problems some indication is usually given in the question as to
the form of the final result, which depends on the choice of unknowns
to be solved. In this case solve for the powers of p, v and d, namely a, ¢
and e.

From equation (1) a=1-f
From equation 3) c¢=2-f
From equation 2) e=—-1+3a—-c—-b+f
=—f-b
Substituting these values in the original equation
p=Co PP aT-by

N [ pvd\ ™
o) (%)
3\
_e2 (1 (o)
T od d m

For geometrically similar pipes (//d) is 2 constant and (/d)®~! can
be combined with C. Putting K = C(//d)"~

WP {2
o dK(/t)

Since neither K nor f are known this is written simply as

- It is interesting to compare this result with the Darcy formula

2

; p pvd
From equation (4 hy="—= ( )
q O] ™ 3 g¢
which indicates that the Darcy coefficient f must be a function of the

‘pipe Reynolds number pvd/p. This has already been shown by more

orthodox methods (see volume 1).

A rational formula for loss of pressure when fluid flows
through geometrically similar pipes is

_ va il (pvd)

The measured loss of head in a 50 mm diam pipe conveying water
at 0.6 m/s is 800 mm of water per 100 m length. Calculate the loss
of head in millimetres of water per 400 m length when air flows
through a 200 mm diam pipe at the corresponding speed. Assume
that the pipes have geometrically similar roughness and take the

4 SOLVING PROBLEMS IN FLUID MECHANICS



1.5 Resistance to a
partially-submerged
body

densities of air and water as 1.23 and 1000 kg/m® and the abso-
lute viscosities as 1.8x10~> and 0.12 Pa/s respectively.

Solution. The formula p = (phv*/d)¢(pvd/y), derived by dimen-
sional analysis in example 1.3, might appear to be of little use since
the nature of the function ¢(pvd/p) is unknown, but it can be used for
comparison of the pressure drops in two geometrically similar pipes
provided that the value of the Reynolds number pvd/p is the same in

both cases. Then
v,d, d.
¢(P1 1 I) :¢(P2V2 2)
1 Ha

and the ratio of pressure drops simplifies to

p_phvid

K,
The velocity of flow in the second pipe required to make the Reynolds
number the same in both is known as the corresponding speed. Using
the suffix w for the pipe containing water and a for that containing air,
for equality of Reynolds numbers,
PwVwlw _ PaVada
Hw Ha
Corresponding speed for air
Pw Dy K
=Y =V
Y pady
1000 50 18 x107°
123 %200 % o1z - 83ms
Ratio of pressure drops

=0.6

Pa_PaladyVa
Pv  Pulvds %
1B a0 50 183
1000~ 100 = 200 ~ 0.67
If loss of head per 100m in 50 mm pipe is 800 mm of water
Loss of head per 400 m in 200 mm pipe = 0.001 44 x 800
= 9.15 mm of water

=0.001 44

Find by dimensional analysis a rational formula for the resis-
tance to motion R of geometrically similar bodies moving par-
tially submerged through a viscous, compressible fluid of density
p and coefficient of dynamic viscosity x with a uniform velocity
V.

DIMENSIONAL ANALYSIS &



Solution. The resistance R will be due to skin friction, wave resistance
and compressibility of the fluid and will depend on the size of the body
denoted by a characteristic length /, the velocity V, the density p,
viscosity g and bulk modulus K of the fluid and the gravitational
acceleration g (for wave resistance). Thus R is a function of /, V, p,
1, K and g. The form of this function may be simple as was assumed in
example 1.4 or may consist of a series of terms made up of the product
of the variables each raised to suitable powers

R=AFV K + APV g yPEUG - (1)
where A4, A,, ... are numerical constants, x, x|, ..., ¥, y1, ... etc. are
unknown indices. Thus :

R

Alx— =y 21—z - =1_r-r
ARy~ Tl Ve TR

Since the first term on the right-hand side is a pure number, the
equation will only be correct if dimensionally

R=AFV' 0/’ K'

The dimensions of the quantities are: R = MLT 2 I=L V=LT",
p=ML3 p=ML'T™', K= ML'T™%, g = LT Substituting in
equation (1)

MLT 2 =L x T x M°L™% x MPLPTP x MIL9T ¥ x L'T™%
Equating powers of M, L and T

l=z+p+gq (2
l=x+y-3z—-p—q+r 3)
—2=-y-p-29-2r 4)

Equations (2), (3) and (4) allow of three solutions only. A useful result
is obtained by solving for x, y and z giving

z=1l-p-¢q, y=2—-p—-29-2r, x=2-p+r.

All the other terms on the right-hand side of equation (1) are similar
to the first so that by the same dimensional reasoning

x1=2-pi+r, N=2-p-2q-2r, z1=1-p—q

and so on. Substituting in equation (1)

R=pVZIZ{A<.’%l>_P<_\7(KL/_B)'Z"(ﬁ)-z,

()" (wm) (@) )

The series in brackets is an unknown function of (p¥!/u), (V//(K/p))
and (¥V//(lg)) and can be written

6 SOLVING PROBLEMS IN FLUID MECHANICS



1.6 Thrust of screw
propeller

(5)

R=pV212¢{pV1 Vv vV }

wV(K]p)' V(lg)
The terms in the function are all dimensionless groups,

%/—1 is the Reynolds number,

is the Mach number and

14
V(K/p)
—\—/%)— is the Froude number.
Equation (5) may also be written

R Vi ¥V v
AR {T‘ VK/p) m}

in which case R/pV2I* will also be found to be dimensionless.

Assuming that the thrust F of a screw propeller is dependent
upon the diameter d, speed of advance v, fluid density p, revolu-
tions per second n and coefficient of viscosity u, show that it can
be expressed by the equation

= pdtPe{ -1, B
F_pdv¢{pdv’v}

Solution. F will be a function of d, v, p, n and . Instead of expanding
this function fully as in éxample 1.5, since all the terms are similar we
can write

F=Y Ad"Vp'n'y’ (1)

where A4 is a numerical constant and m, p, g, r and s are unknown
powers.

The dimensions of the variables are F = MLT 2, d =L,v= LT,
p=ML> n=T" p=ML'T".

Substituting the dimensions for the variables, equation (1) will be
true if

MLT 2 =L" x I’T? x MIL™ x T™" x M*L~T"3

Equating powers of

M l=g+s
L l=m+p—-3g-s
T -2=-p—-r-s

The equation given in the problem indicates that it is desirable to solve
for m, p and g in terms of r and s.

DIMENSIONAL ANALYSIS 7



1.7 Buckingham'’s Pi
theorem

g=1-s, p=2—r-s

m=1-p+3¢g+s=2+r—=s
Substituting in equation (1)

Fo= ZAd2+r—xV2—r—:pl—snru:
Regrouping by powers

2o 1\ fdn\
- S () (8

which can be written
_ o [ p odn
F = pd°v ¢{——v,—v }

where ¢ means “a function of ”.

State Buckingham’s IT theorem and apply it to the problem of
example 1.6.

Solution. Buckingham’s IT theorem states that if there are n variables
in a problem and these variables contain m primary dimensions (for
example M, L and T) the equation relating the variables will contain
n —m dimensionless groups. Buckingham referred to these dimension-
less groups as II;, II,, etc., and the final equation obtained is

I, = ¢(H2y Hs, ... Hn—-m)

Thus in example 1.5 there are seven variables with three primary
dimensions so that the final equation

R 6 { pVl 14 14 }
PV kV(K/p) V(Ig)
is formed of four dimensionless groups.
In the problem of example 1.6 there are six variables, F, p, d, v, u and

n and three primary dimensions. The equation relating the variables
will therefore be formed of 6—3=3 dimensionless groups and will be

IT; = ¢(IT,, IT)

The dimensionless groups can be formed as follows:

(1) Choose a number of variables equal to the number of primary
dimensions and including all these dimensions, in this case F, p and v.

(2) Form dimensionless groups by combining the variables selected
in (1) with each of the others in turn.

Combining F, p and v with 4 to form a dimensionless group:

2 iR
' pvid?
Combining F, p and v with n,
2
I, = F_"d
pv

Combining F, p and v with g,

8 SOLVING PROBLEMS IN FLUID MECHANICS



