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Preface

The aim of this book is to present an introduction to calculus on normed vector
spaces at a higher undergraduate or beginning graduate level. The prerequisites are
basic calculus and linear algebra. However, a certain mathematical maturity is also
desirable. All the necessary topology and functional analysis is introduced where
necessary.

I have tried to show how calculus on normed vector spaces extends the basic
calculus of functions of several variables. I feel that this is often not done and we
have, on the one hand, very elementary texts, and on the other, high level texts, but
few bridging the gap.

In the text there are many nontrivial applications of the theory. Also, I have
endeavoured to give exercises which seem, at least to me, interesting. In my
experience, very often the exercises in books are trivial or very academic and it
is difficult to see where the interest lies (if there is any!).

In writing this text I have been influenced and helped by many other works on
the subject and by others close to it. In fact, there are too many to mention; however,
I would like to acknowledge my debt to the authors of these works. I would also like
to express my thanks to Mohamed El Methni and Sylvain Meignen, who carefully
read the text and gave me many helpful suggestions.

Writing this book has allowed me to clarify many of my ideas and it is my
sincere hope that this work will prove useful in aiding others.

Grenoble, France Rodney Coleman
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Chapter 1
Normed Vector Spaces

In this chapter we will introduce normed vector spaces and study some of their
elementary properties.

1.1 First Notions

We will suppose that all vector spaces are real. Let £ be a vector space. A mapping
[| -] : E—> Rissaid to be a norm if, forall x, y € E and A € R we have

e x|l =0
e x| =0 x=0;
o llAx| = [A[llx]l;

lx + ylIl < llxll + NIyl

The pair (E, || - ||) is called a normed vector space and we say that || x|| is the norm
of x. The fourth property is often referred to as the normed vector space triangle
inequality.

Exercise 1.1. Show that | — x|| = || x|| and that || - || is a convex function, i.e.,
[Ax + (1 =)yl < Allx]| + (X =)y

forall x,y € E and A € [0, 1].

When there is no confusion, we will simply write E for a normed vector space.
To distinguish norms on different normed vector spaces we will often use suffixes.
For example, if we are dealing with the normed vector spaces E and F, we may
write || - || for the norm on E and | - || for the norm on F. The most common
norms on R” are defined as follows:

Il = lxil + ==+ Il Nixlla = /x} +---+x2  and

Ixlloo = max{|x]...., |%al},

R. Coleman, Calculus on Normed Vector Spaces, Universitext, 1
DOI 10.1007/978-1-4614-3894-6_1, © Springer Science+Business Media New York 2012



2 I Normed Vector Spaces

where x; is the ith coordinate of x. There is no difficulty in seeing that || - ||, and
|l - lloo are norms. For || - ||, the only difficulty can be found in the last property. If
wesetx-y = ) _, X;yi, the dot product of x and y, and write || - || for || - ||, then

p(@) = 2||x|? +2t(x - y) + IyI? = tx + y[* = 0.
As p is a second degree polynomial and always nonnegative, we have

4((x - )* = lIxIPlyl?) <0

and so

lx+yI2=&+y)-x+y) = x>+ Iy +2(x-y)
< IxI? + iy I + 2=yl = Alxll + Iy

This gives us the desired inequality.
If n = 1, then these three norms are the same, i.e.,

lxlls = llxll2 = Ixlloo = |x]-

Exercise 1.2. Characterize the norms defined on R.

In general, we will suppose that the norm on R is the absolute value.
It is possible to generalize the norms on R” defined above. We suppose that p > 1

and for x € R" we set || x|, = (37—, |x,~|”)#.
Proposition 1.1. | x||, is a normon R".

Proof. 1t is clear that the first three properties of a norm are satisfied. To prove
the triangle inequality, we proceed by steps. We first set ¢ = ;‘_’—l and prove the
following formula for strictly positive numbers a and b:

b

+ -
q

1,1
rha

a =

SRR

For k € (0, 1) let the function f; : R —> R be defined by fi(r) = k(t—1)—1* +1.
Then f;(1) = 0 and ‘-’d{*-(t) = k(t —t*"). It follows that f;(¢) > 0ift > 1 and so,
fork € (0,1)and? > 1,
tk <tk +(1-k).
Ifwesett = :—andk = ;’; whena > b,ort = gandk = qlwhena < b, then we
obtain the result. I
N N o oLyl xg s

The next step is to take x, y € R"” \ {0} and seta = (ﬁ';)” and b = (ﬁﬂ;)" in

the formula. We obtain
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iyil l( |xi | )p +_1_( il )q
Ixlplylly = 2 \lxll, g \lylly )~

and then, after summing over i,

n
3 Ixillyil < Ixlpllyllg-
i=l1

This inequality clearly also holds when x = Oor y = 0.
Now,

n n
Ix + y12 < 3 xillxe + yil 77+ 3 yillx + yel P~
J i=l

i=1
and, using the inequality which we have just proved,

1

n n q
3 xillxi + vl < Nl (Zm + ysl"’“”")
i=1

1

= x|, (Z |x; + y.-v’)

i=1
]
= lxlipllx + »l5-

In the same way

n
Ja
3 willxi + w17 < lyllplx + yllg
i=l1
and so "
lIx + 12 < Aixll, + Iyl)lx + i3,

from which we obtain the triangle inequality. O

Exercise 1.3. Show that
,l,‘_.ml Ixll, = llxlls and plj_rgo Ixll, = llxlloo

forany x € R".

Let E be a vector space and N (E) the collection of norms defined on E. We
define a relation ~ on N'(E) by writing || - || ~ || - ||* if there exist constants & > 0
and f > 0 such that

al x| < x| < Blx|I*
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for all x € E. This relation is an equivalence relation. If || - || ~ || - |*, then we say
that the two norms are equivalent.

Exercise 1.4. Establish the inequalities ||x|loc < |lxll2 < |Ix]i < n]lx|lco and
deduce that these three norms on R" are equivalent.

If S is a nonempty set, then a real-valued function d defined on the Cartesian
product S is said to be a metric (or distance) if it satisfies the following properties
forall x,y,z € §%

* d(x,y)=0;

e dx,y) =0 x=y;

* d(x,y)=d(y,x);

o d(x,y) <d(x,2) +d(zy).

We say that the pair (S, d) is a metric space and that d(x, y) is the distance from
x to y. The fourth property is referred to as the (metric space) triangle inequality.
If (E,| - ||) is a normed vector space, then it easy to see that, if we set d(x,y) =
|[x — y|l, then d defines a metric on E. Many of the ideas in this chapter can be
easily generalized to general metric spaces.

Exercise 1.5. What is the distance from A = (1, 1) to B = (4, 5) for the norms we
have defined on R2?

Consider a point @ belonging to the normed vector space E. If r > 0, then the
set

B(a,r) ={xe€ E:|la—x| <r}

is called the open ball of centre a and radius r. For r > 0 the set
B@,r)={x€E:|la—x|| <r}

is called the closed ball of centre a and radius r. In R the ball B(a, r) (resp. B(a, r))
is the open (resp. closed) interval of length 27 and centre a. We usually refer to balls
in the plane R? as discs.

Exercise 1.6. What is the form of the ball B(0, 1) C R2 for the norms || - ||, || - [|2,
and || - |leo? (Notice that a ball may have corners.)

1.2 Limits and Continuity

We now consider sequences in normed vector spaces. If (x,),en is a sequence
in a normed vector space E and there is an element / € E such that lim,—
[[xx — || = O, then we say that the sequence is convergent. It is easy to see
that the element / must be unique. We call / the limit of the sequence and write
lim, 00 X, = /. We will in general abbreviate (x)sen to (x,) and lim, o0 X, =/
to lim x, = . The following result is elementary.
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Proposition 1.2. If (x,) and (y,) are convergent sequences in E, with limx, = [,
andlim y, = l,, and A € R, then

lim(x, +y) =L+ 1 and lim(Ax,) = Al,.

Suppose now that we have two normed vector spaces, (E, || - ||g) and (F, | - ||r)-
Let A be a subset of E, f a mapping of A into F and a € A. We say that f is
continuous at a if the following condition is satisfied:

for all >0, there exists §>0 such that, if x € 4 and ||x—a|| g <8,

then || f(x)— f(a)|l<e.

If f is continuous at every point a € A, then we say that f is continuous (on
A). Finally,if A C Eand B C F and f : A — B is a continuous bijection
such that the inverse mapping f~' is also continuous, then we say that f is a
homeomorphism.

Exercise 1.7. Suppose that | - || and | - ||} are equivalent norms on E and || - || ¢
and ||- || equivalent norms on F. Show that f is continuous at a (resp. continuous)
for the pair (|| - ||, || - || #) if and only if f is continuous at a (resp. continuous) for
the pair (|| - |z Il - 1F)-

Proposition 1.3. The norm on a normed vector space is a continuous function.

Proof. We have

xl=llx =y +yl <lx =yl + vl = lxll = llyll < llx =yl
In the same way [|y[| — [Ix]| < |ly — x||. As [ly — x|| = [lx — y||, we have
el =yl =< flx =y,
and hence the continuity. (]

The next result is also elementary.

Proposition 1.4. Let E and F be normed vector spaces, A C E,a € A, fand g
mappings from E into F and A € R.

e If f and g are continuous at a, then so is f + g.

e If f is continuous at a, then so is Af .

e Ifa is a real-valued function defined on E and both [ and «a are continuous at
a, thenso is af .

Corollary 1.1. The functions f : E — F which are continuous at a (resp.
continuous) form a vector space.
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We now consider cartesian products of normed vector spaces. Let (Ey, || -
g dissss (E,. ||-ll£,) be normed vector spaces. The cartesian product E, x---x E,,
is a vector space. For (x,...,x,) € E; x---x E, we set

lCxts-- - xp)lls = lxillg, + -+ llxpllg, and

NG, xp) e = max(li g, I llE,)-
There is no difficulty in seeing that || - ||s and || - ||»s are equivalent norms on E; x
+++x E . In general, we will use the second norm, which we will refer to as the usual

norm. If Ey = ---= E, =Rand || -||g;, = |-|foralli,then | -|s = | - | and
I llar =1l - lloo-

Propeosition 1.5. Let (E, || - ||) be a normed vector space.

e The mapping f : E X E — E,(x,y) —> x + y is continuous.
e The mapping g : R x E —> E, (A, x) —> Ax is continuous.

Proof. Let us first consider f. We have

(e y) = (@,b)|lm <€ = |lx —a| <e, |ly—b| <e
=[x+ y)—@+bd)| <llx—al + |y —bll <2,

hence f is continuous at (a, b).
We now consider g. If |(A, x) — (a,a)|| <€, then|A —a| <eand ||x —al <€
and so

[Ax—aal = [[Ax—Aa+Aa—aa| < |A[[x—all+[A—alllall < (le|+€)e+elal,

therefore g is continuous at (¢, a). O

A composition of real-valued continuous functions of a real variable is continu-
ous. We have a generalization of this result.

Proposition 1.6. Let E, F and G be normed vector spaces, A CE, BC F, f a
mapping of A into F and g a mapping of B into G. If f(A) C B, f is continuous
ata € A and g continuous at f(a), then g o f is continuous at a.

Proof. Letustake € > 0. As g is continuous at _f(a), there exists § > 0 such that, if

y € Band ||ly— f(a)|llr < 8,then ||g(y)—g(f(a))llc < €. As f iscontinuous at a,
there exists @ > 0 such that, if x € A and ||x —al|g < @, then || f(x)— f(a)||r < 8.

This implies that ||g(f(x)) — g(f(a))ll¢ < €. Therefore g o f is continuous at a.
O

Corollary 1.2. If A C E and f : A —> R is continuous and nonzero on A, then
the function g = -}— is continuous on A.



